SU Jin-ku, GUI Zhi-ming. Prediction of Short-term Taxi Flow Based on Spatio-temporal Characteristics[J]. Computer and Modernization, 2023, 0(05): 32-38.
[1] 交通运输部. 2019年交通运输行业发展统计公报[J]. 中国水运(上半月), 2020(5):40-43.
[2] 厦门市国土空间和交通研究中心. 2020年度厦门城市交通发展报告[EB/OL]. (2021-08-27)[2022-06-03].http:
//m.xmhouse.com/news/news_pdetailv2.aspx?id=728276.
[3] 毕里缘,伍赛,陈刚,等. 基于循环神经网络的数据库查询开销预测[J]. 软件学报, 2018,29(3):799-810.
[4] 朱晶晶,韩立新. 基于RNN句子编码器的聊天机器人[J]. 计算机与现代化, 2018(1):32-35.
[5] 何蕊伽,夏秀渝. 基于LSTM的关键词识别系统设计[J]. 计算机与网络, 2022,48(2):64-69.
[6] 刘桐彤. 基于长短期记忆神经网络的短期负荷预测方法[J]. 黑龙江科技信息, 2016(31):81.
[7] 赵省军,张开鹏,付鑫权,等. 基于社区划分的GRU神经网络负荷建模[J]. 综合智慧能源, 2022,44(2):15-20.
[8] 孙志翔,丁彬,孙晓燕. 基于迁移学习和GRU网络的新建小区负荷预测[J]. 电力需求侧管理, 2022,24(1):55-62.
[9] 李高盛,彭玲,李祥,等. 基于LSTM的城市公交车站短时客流量预测研究[J]. 公路交通科技, 2019,36(2):128-135.
[10] 徐海兵,郭久明. 基于双向GRU模型的网络流量预测的研究[J]. 电子技术应用, 2022,48(2):19-22.
[11] KHAN L, AMJAD A, AFAQ K M, et al. Deep sentiment analysis using CNN-LSTM architecture of English and Roman Urdu text shared in social media[J]. Applied Sciences, 2022. DOI: 10.3390/app12052694.
[12] LI P F, ZHANG J, PETER K. Prediction of flow based on a CNN-LSTM combined deep learning approach[J]. Water,2022,14(6). DOI: 10.3390/W14060993.
[13] 刘臣,陈静娴,郝宇辰,等. 基于时空网络的地铁进出站客流量预测[J]. 计算机工程与应用, 2021,57(18):248-254.
[14] DANIEL G, LORENZO L, CESARE A, et al. Seizure localisation with attention-based graph neural networks[J]. Expert Systems with Applications,2022,203(C). DOI: 10.1016/j.eswa.2022.117330.
[15] GUO F F, WU J. Message transmission strategy based on recurrent neural network and attention mechanism in Iot system[J]. Journal of Circuits, Systems and Computers, 2022,31(7):143-145.
[16] CHOI W, KIM M J, YUM M S, et al. Deep convolutional gated recurrent unit combined with attention mechanism to classify pre-ictal from interictal EEG with minimized number of channels[J]. Journal of Personalized Medicine, 2022,12(5):763. DOI: 10.3390/jpm12050763.
[17] QIN Q. Design and application of Chinese English machine translation model based on improved bidirectional neural network fusion attention mechanism[J]. Wireless Communications and Mobile Computing, 2022. DOI:10.1155/2022/9717368.
[18] WANG C R, HAN D, LIU Q, et al. A deep learning approach for credit scoring of peer-to-peer lending using attention mechanism LSTM[J]. IEEE Access,2019,7:2161-2168.
[19] FU L F, ZHAO F F. Prediction of hot topics of agricultural public opinion based on attention mechanism LSTM model[J]. International Journal of Agricultural and Environmental Information Systems(IJAEIS),2021,12(4). DOI: 10.401
8/IJAEIS.289429.
[20] 张鹏飞,翁小雄. 基于注意力机制LSTM的地铁乘客出行行为预测研究[J]. 重庆交通大学学报(自然科学版), 2022,41(5):14-19.
[21] WEN C R, HONG M J, YANG X H, et al. Pulmonary nodule detection based on convolutional block attention module[C]// 第三十八届中国控制会议论文集. 2019:1070-1074.
[22] CHEN B Y, ZHANG Z H, LIU N, et al. Spatiotemporal convolutional neural network with convolutional block attention module for micro-expression recognition[J]. Information, 2020,11(8). DOI: 10.3390/info11080380.
[23] 佘逸飞,高军峰,闵祥德,等. 基于CBAM Faster R-CNN的食道癌检测[J]. 中南民族大学学报(自然科学版), 2021,40(6):631-638.
[24] 赵红蕊,薛雷. 基于LSTM-CNN-CBAM模型的股票预测研究[J]. 计算机工程与应用, 2021,57(3):203-207.
[25] 吴仁彪,赵娅倩,屈景怡,等. 基于CBAM-CondenseNet的航班延误波及预测模型[J]. 电子与信息学报, 2021,43(1):187-195.
[26] 朱婉丽. 相关性分析原理在图书情报分析中的运用[J]. 江苏科技信息, 2019,36(1):9-12.
[27] 张衍伟,田振清. 随机变量简单相关系数图示的算法设计[J]. 内蒙古师范大学学报(自然科学汉文版), 2011,40(5):497-499.
[28] MA X, SHEN J P. A multilevel multiset time-series model for describing complex developmental processes[J]. Applied Psychological Measurement,2017,41(4). DOI: 10.11
77/0146621616686058.