ZHANG Zi-sen, XU Xiao-zhong. Load Forecasting Based on Decomposition and Multi-component Ensemble Learning[J]. Computer and Modernization, 2023, 0(03): 96-101.
[1] SUGANTHI L, SAMUEL A A. Energy models for demand forecasting-A review[J]. Renewable & Sustainable Energy Reviews, 2012,16(2):1223-1240.
[2] 周潮,邢文洋,李宇龙. 电力系统负荷预测方法综述[J]. 电源学报, 2012(6):32-39.
[3] 牛东晓,陈志业,邢棉,等. 具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J]. 中国电机工程学报, 2002,22(1):29-32.
[4] 张伏生,汪鸿,韩悌,等. 基于偏最小二乘回归分析的短期负荷预测[J]. 电网技术, 2003,27(3):36-40.
[5] HAGAN M T, BEHR S M. The time series approach to short-term load forecasting[J]. IEEE Power Engineering Review, 1987,2(3):785-791.
[6] YANG L T, YANG H G. Analysis of different neural networks and a new architecture for short-term load forecasting[J]. Energies, 2019,12(8). DOI:10.3390/en12081433.
[7] HONG W C. Electric load forecasting by support vector model[J]. Applied Mathematical Modelling, 2009,33(5):2444-2454.
[8] YU F, XU X Z. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014,134:102-113.
[9] BARMAN M, CHOUDHURY N B D, SUTRADHAR S. A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India[J]. Energy, 2018,145:710-720.
[10] GAO X, LI X B, ZHAO B, et al. Short-term electricity load forecasting model based on EMD-GRU with feature selection[J]. Energies, 2019,12(6). DOI:10.3390/en12061140.
[11] 夏博,杨超,李冲. 电力系统短期负荷预测方法研究综述[J]. 电力大数据, 2018,21(7):22-28.
[12] 徐永瑞,左丰恺,朱新山,等. 改进GBDT算法的负荷预测研究[J]. 电力系统及其自动化学报, 2021,33(8):94-101.
[13] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001,29(5):1189-1232.
[14] 徐继伟,杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018,40(6):1082-1092.
[15] BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and Regression Trees[M]. New York: Chapman & Hall, 1984:383-469.
[16] TSO G K F, YAU K K W. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks[J]. Energy, 2007,32(9):1761-1768.
[17] AHMED N K, ATIYA A F, GAYAR N E, et al. An empirical comparison of machine learning models for time series forecasting[J]. Econometric Reviews, 2010,29(5-6):594-621.
[18] 刘成龙,高旭,曹明. 基于VMD和BA优化随机森林的短期负荷预测[J]. 中国测试, 2022,48(4):159-165.
[19] QIU X H, REN Y, SUGANTHAN P N, et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017,54:246-255.
[20] LI J, DENG D Y, ZHAO J B, et al. A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network[J]. IEEE Transactions on Industrial Informatics, 2021,17(4):2443-2452.
[21] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: A seasonal-trend decomposition procedure based on Loess[J]. Journal of Official Statistics, 1990,6(1):3-73.
[22] 师洪涛,杨静玲,丁茂生,等. 基于小波—BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011,35(16):44-48.
[23] 孙志刚,翟玮星,李伟伦,等. 基于EMD和相关向量机的短期负荷预测[J]. 电力系统及其自动化学报, 2011,23(1):92-97.