ZENG Yi-pu, DAI Yi-ru, CHEN Yu-tian. Dynamic Particle Swarm Optimization without Velocity Based on Opposition-based Learning and Elite Promotion[J]. Computer and Modernization, 2023, 0(03): 113-120.
[1] 郭成,张万达,王波,等. 多种群并行协作的粒子群算法[J]. 计算机与现代化, 2022(1):33-40.
[2] 余伟伟,谢承旺,闭应洲,等. 一种基于自适应模糊支配的高维多目标粒子群算法[J]. 自动化学报, 2018,44(12):2278-2289.
[3] 张晓燕,赫俊民,刘文英,等. 基于种群划分与变异策略的粒子群优化算法[J]. 计算机与现代化, 2019(5):122-126.
[4] DE CAMPOS A, POZO A T R, DUARTE E P. Parallel multi-swarm PSO strategies for solving many objective optimization problems[J]. Journal of Parallel and Distributed Computing, 2019,126(C):13-33.
[5] 梁静,刘睿,于坤杰,等. 求解大规模问题协同进化动态粒子群优化算法[J]. 软件学报, 2018,29(9):2595-2605.
[6] PAROUHA R P, VERMA P. An innovative hybrid algorithm to solve nonconvex economic load dispatch problem with or without valve point effects[J]. International Transactions on Electrical Energy Systems, 2020,31(12). DOI:10.1002/2050-7038.12682.
[7] LI J Y, ZHAN Z H, LIU R D, et al. Generation-level parallelism for evolutionary computation: A pipeline-based parallel particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2021,51(10):4848-4859.
[8] EL-SHERBINY M M. Particle swarm inspired optimization algorithm without velocity equation[J]. Egyptian Informatics Journal, 2011,12(1):1-8.
[9] MOHAMMADIAN M, LORESTANI A, ARDEHALI M M. Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm[J] . Energy, 2018,161:710-724.
[10] 张天泽,李元香,项正龙,等. 基于RMSprop的粒子群优化算法[J]. 计算机工程与设计, 2021,42(3):642-648.
[11] LIU X F, ZHAN Z H, GAO Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019,23(4):587-602.
[12] JIAN J R, CHEN Z G, ZHAN Z H, et al. Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2021,25(4):779-793.
[13] WANG Z J, ZHAN Z H, KWONG S, et al. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization[J]. IEEE Transactions on Cybernetics, 2021,51(3):1175-1188.
[14] 薛文,苏宏升. 基于分群策略的混沌粒子群优化算法[J]. 计算机工程与设计, 2019,40(2):443-448.
[15] XU G P, CUI Q L, SHI X H, et al. Particle swarm optimization based on dimensional learning strategy[J]. Swarm and Evolutionary Computation, 2019,45(1):33-51.
[16] 唐可心,梁晓磊,周文峰,等. 具有重组学习和混合变异的动态多种群粒子群优化算法[J]. 控制与决策, 2021,36(12):2871-2880.
[17] CHEN Y G, LI L X, PENG H P, et al. Dynamic multi-swarm differential learning particle swarm optimizer[J]. Swarm and Evolutionary Computation, 2017,39. DOI:10.1016/j.swevo.2017.10.004.
[18] FARSHI T R, ARDABILI A K. A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding[J]. Multimedia Systems, 2021,27(1):125-142.
[19] 张孟健,汪敏,王霄,等. 混合粒子群-蝴蝶算法的WSN节点部署研究[J]. 计算机工程与科学, 2022,44(6):1013-1022.
[20] ELLAHI M, ABBAS G, SATRYA G B, et al. A modified hybrid particle swarm optimization with bat algorithm parameter inspired acceleration coefficients for solving eco-friendly and economic dispatch problems[J]. IEEE Access, 2021,9:82169-82187.
[21] 夏学文,刘经南,高柯夫,等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015,38(7):1397-1407.
[22] ANG K M, LIM W H, ISA N. A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems[J]. Expert Systems with Applications, 2020,140(C). DOI:10.1016/j.eswa.2019.112882.
[23] 高云龙,闫鹏. 基于多种群粒子群算法和布谷鸟搜索的联合寻优算法[J]. 控制与决策, 2016,31(4):601-608.
[24] MAHDAVI S, RAHNAMAYAN S, DEB K. Opposition based learning: A literature review[J]. Swarmand Evolutionary Computation, 2018,39(8):1-23.
[25] 杨震伦. 基于记忆整合的粒子群优化算法及应用研究[D]. 广州:华南理工大学, 2016.
[26] 梁静,葛士磊,瞿博阳,等. 求解电力系统经济调度问题的改进粒子群优化算法[J]. 控制与决策, 2020,35(8):1813-1822.
[27] CHEN X, TIANFIELD H, MEI C L, et al. Biogeography-based learning particle swarm optimization[J]. Soft Computing, 2017,21(24):7519-7541.
[28] MAZHOUD I, HADJ-HAMOU K, BIGEON J, et al. Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism[J]. Engineering Applications of Artificial Intelligence, 2013,26(4):1263-1273.
[29] MEZURA-MONTES E, MIRANDA-VARELA M E, GÓMEZ-RAMÓN R D C. Differential evolution in constrained numerical optimization: An empirical study[J]. Information Sciences, 2010,180(22):4223-4262.
[30] MEZURA-MONTES E, CETINA-DOMÍNGUEZ O. Empirical analysis of a modified Artificial Bee Colony for constrained numerical optimization[J]. Applied Mathematics & Computation, 2012, 218(22). DOI:10.1016/j.amc.2012.
04.057.
[31] 王贞,支俊阳,李旭飞,等. 求解约束优化问题的复合人工蜂群算法[J]. 计算机工程与应用, 2021,58(3):100-111.