LIU Ya-qing, ZHANG Hai-jun, LIANG Ke-jin, ZHANG Yu, WANG Yue-yang. Text Summarization Generation Model Based on PGN-CL[J]. Computer and Modernization, 2023, 0(02): 66-71.
[1] 侯圣峦,张书涵,费超群. 文本摘要常用数据集和方法研究综述[J]. 中文信息学报,2019,33(5):1-16.
[2] EL-KASSAS W S, SALAMA C R, RAFEA A A, et al. Automatic text summarization: A comprehensive survey[J]. Expert Systems with Applications, 2021,165. DOI:10.1016/j.eswa.2020.113679.
[3] 李金鹏,张闯,陈小军,等. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021,58(1):1-21.
[4] 陈伟,杨燕. 基于指针网络的抽取生成式摘要生成模型[J]. 计算机应用, 2021,41(12):3527-3533.
[5] MIHALCEA R, TARAU P. Textrank: Bringing order into text[C]// Proceedings of the 2004 Conference on Cmpirical Methods in Natural Language Processing. 2004: 404-411.
[6] NALLAPATI R, ZHAI F F, ZHOU B W. SummaRuNNer: A recurrent neural network based sequence model for extractive summarization of documents[C]// 31st AAAI Conference on Artificial Intelligence. 2017,31(1). DOI:10.1609/aaai.v31i1.10958.
[7] MEHDAD Y, CARENINI G, NG R T. Abstractive summarization of spoken and written conversations based on phrasal queries[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. 2014: 1220-1230.
[8] CHOPRA S, AULI M, RUSH A M. Abstractive sentence summarization with attentive recurrent neural networks[C]// Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016:93-98.
[9] ZHANG H Y, CAI J J, XU J J, et al. Pretraining-based natural language generation for text summarization[C]// Proceedings of the 23rd Conference on Computational Natural Language Learning. 2019, 789-797.
[10] RUSH A M, CHOPRA S, WESTON J. A neural attention model for abstractive sentence summarization[J]. arXiv preprint arXiv:1509.00685, 2015.
[11] NALLAPATI R, ZHOU B W, SANTOS C D, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]// Proceedings of the 20th SIGNLL Conference on Computational Natural. 2016, 280-290.
[12] GU J T, LU Z D, LI H, et al. Incorporating copying mechanism in sequence-to-sequence learning[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016,1:1631-1640.
[13] LIN J Y, SUN X, MA S M, et al. Global encoding for abstractive summarization[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018,2:163-169.
[14] SEE A, LIU P J, MANNING C D. Get to the point: Summarization with pointer-generator networks[C]// Proceedings of the 55th Annual Meeting of the ACL. Stroudsburg: ACL, 2017,1:1073-1083.
[15] TU Z P, LU Z D, LIU Y, et al. Modeling coverage for neural machine translation[C]// The 2016 Annual Meeting of the Association for Computational Linguistics. 2016,1:76-85.
[16] WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989,1(2):270-280.
[17] PAULUS R, XIONG C M, SOCHER R. A deep reinforced model for abstractive summarization[J]. arXiv preprint arXiv:1705.04304, 2017.
[18] YU L T, ZHANG W N, WANG J, et al. Seqgan: Sequence generative adversarial nets with policy gradient[C]// Proceedings of the AAAI conference on artificial intelligence. 2017, 31(1). DOI:10.1609/aaai.V31i1.10804.
[19] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[J]. arXiv preprint arXiv:2002.05709, 2020.
[20] LOGESWARAN L, LEE H. An efficient framework for learning sentence representations[J]. arXiv preprint arXiv:1803.02893, 2018.
[21] YANG Z H, CHENG Y, LIU Y, et al. Reducing word omission errors in neural machine translation: A contrastive learning approach[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019, 6191-6196.
[22] LEE S, LEE D B, HWANG S J. Contrastive learning with adversarial perturbations for conditional text generation[J]. arXiv preprint arXiv:2012.07280, 2020.
[23] HU B, CHEN Q, ZHU F. LCSTS: A large scale chinese short text summarization dataset[J]. arXiv preprint arXiv:1506.05865, 2015.
[24] LIN C Y, HOVY E. Automatic evaluation of summaries using n-gram co-occurrence statistics[C]// Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics. 2003,1:150-157.
[25] LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]// The 2004 Annual Meeting of the Association for Computational Linguistics. 2004.
[26] MAATEN L V D, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research. 2008,9:2579-2605.