Computer and Modernization ›› 2022, Vol. 0 ›› Issue (12): 88-94.
Previous Articles Next Articles
Online:
2023-01-04
Published:
2023-01-04
JIAO Xin-quan, LI Rui-kang, CHEN Jian-jun. Remote Sensing Image Object Detection Based on Improved MoCo[J]. Computer and Modernization, 2022, 0(12): 88-94.
[1] ZHANG X, LIU L Y, CHEN X D, et al. A novel multitemporal cloud and cloud shadow detection method using the integrated cloud z-scores model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(1):123-134. [2] GUO J H, YANG J Y, YUE H J, et al. CDnetV2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,59(1):700-713. [3] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141. [4] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:11531-11539. [5] XIA G S, HU J W, HU F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):3965-3981. [6] ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(8):5535-5548. [7] CHEN J, WAN L, ZHU J R, et al. Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(4):681-685. [8] TAN Q L, LING J, HU J, et al. Vehicle detection in high resolution satellite remote sensing images based on deep learning[J]. IEEE Access, 2020,8:153394-153402. [9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587. [10]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. [11]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. [12]BOCHKOVSKIY A, WANG C Y, MARK LIAO H Y. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020. [13]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single ShotMultiBox Detector[C]// 2016 European Conference on Computer Vision. 2016:21-37. [14]FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv preprint arXiv:1701.06659, 2017. [15]HE K M, ZHANG X, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778. [16]LIN T, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944. [17]LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv:1805.10180, 2018. [18]DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(9):1734-1747. [19]YE M, ZHANG X, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:6203-6212. 〖HJ0.27mm〗 [20]OORD A V D, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:1807.03748, 2018. [21]HNAFF O J, SRINIVAS A, FAUW J D, et al. Data-efficient image recognition with contrastive predictive coding[C]// Proceedings of the 37th International Conference on Machine Learning. 2020:4182-4192. [22]DEVON HJELM R, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[J]. arXiv preprint arXiv:1808.06670, 2018. [23]BACHMAN P, HJELM R D, BUCHWALTER W. Learning representations by maximizing mutual information across views[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019:15535-15545. [24]WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:3733-3742. [25]HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:9726-9735. [26]CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[J]. arXiv preprint arXiv:2003.04297, 2020. [27]CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[J]. arXiv preprint arXiv:2002.05709, 2020. [28]XIE E, DING J, WANG W, et al.DetCo: Unsupervised contrastive learning for object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:8372-8381. [29]LI Y, ZHANG Y, HUANG X, et al. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:182-196. [30]LI Y, CHEN W, ZHANG Y, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020. DOI:10.1016/j.rse.2020.112045. [31]LI Y, KONG D, ZHANG Y, et al. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,179:145-158. [32]GUTMANN M, HYVRINEN A. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[J]. Journal of Machine Learning Research, 2010,9:297-304. [33]CARON M, BOJANOWSKI P, JOULIN A, et al. Deepclustering for unsupervised learning of visual features[C]// 2018 European Conference on Computer Vision. 2018:139-156. [34]CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020:9912-9924. [35]JIANG Z, VON N K, LOISEL J, et al.ArcticNet: A deep learning solution to classify arctic wetlands[J]. arXiv preprint arXiv:1906.00133, 2019. [36]LU X, ZHANG Y, YUAN Y, et al. Gated and axis-concentrated localization network for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(1):179-192. [37] 韩伟. 基于深度神经网络的高分辨率遥感影像弱小目标检测[D]. 武汉:中国地质大学, 2021. |
[1] | HE Sida, CHEN Pinghua. Intent-based Lightweight Self-Attention Network for Sequential Recommendation [J]. Computer and Modernization, 2024, 0(12): 1-9. |
[2] | ZHAO Chenyang, XUE Tao, LIU Junhua. Fashion Clothing Pattern Generation Based on Improved Stable Diffusion [J]. Computer and Modernization, 2024, 0(12): 15-23. |
[3] | HUANG Tingpei1, MA Lubiao1, LI Shibao2, LIU Jianhang1. Gesture Recognition Method Based on WiFi and Prototypical Network [J]. Computer and Modernization, 2024, 0(12): 34-39. |
[4] | ZHANG Xiaodong1, BAI Guangzhi1, LI Min1, LI Haoyang2. Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform [J]. Computer and Modernization, 2024, 0(12): 53-58. |
[5] | LIU Yunhai1, Feng Guang1, WU Xiaoting2, YANG Qun2 . Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes [J]. Computer and Modernization, 2024, 0(12): 66-71. |
[6] | GU Yue, DENG Songfeng, SHEN Ji, MU Wentao, ZHAO Enqi. SAR Ship Detection Algorithm Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(12): 78-83. |
[7] | WANG Yanyuan, MAO Zhengchong. Detection and Recognition Algorithms for Chinese and English Scene Text Images [J]. Computer and Modernization, 2024, 0(12): 84-90. |
[8] | LI Junchao1, YOU Fei1, ZHANG Chao2, SU Lele2, GONG Yan2 . BiLSTM-Attention Prediction Model and Error Analysis #br# Based on Novel Multi-objective Coati Optimization Algorithm [J]. Computer and Modernization, 2024, 0(11): 70-76. |
[9] | WAN Hongwei, CHEN Pinghua. Polyp Segmentation Based on Involution and Coordinate Reverse Attention [J]. Computer and Modernization, 2024, 0(11): 84-90. |
[10] | ZHANG Yu1, 2, LI Jing1, 2, MA Ming1, 2, WANG Zhongxiang1, 2, SUN Yan1, 2. YOLOLW: A Novel Lightweight Object Detection Model [J]. Computer and Modernization, 2024, 0(11): 91-98. |
[11] | QI Xian, LIU Daming, CHANG Jiaxin. Multi-view 3D Reconstruction Based on Improved Self-attention Mechanism [J]. Computer and Modernization, 2024, 0(11): 106-112. |
[12] | YANG Jun1, HU Wei1, ZHU Wenfu2. Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3 [J]. Computer and Modernization, 2024, 0(10): 21-26. |
[13] | WEI Xuecheng1, JIANG Lingyun1, LI Yan2, HE Fei2. Improved Roadside Monocular View Small Target Detection Algorithm Based on YOLOv5 [J]. Computer and Modernization, 2024, 0(10): 27-34. |
[14] | DU Mengjun1, LI Ang1, TONG Jun1, QIAN Jin1, KANG Kai1, WANG Ruoding1, JIN Wenxing2. Power Information Data Fusion Model Based on Improved Extreme Learning Algorithm [J]. Computer and Modernization, 2024, 0(10): 61-64. |
[15] | YANG Shijun1, DI Guangyi1, GAO Jun1, CHEN Jianfei1, WANG Yaokun1, JI Xiaohan2. Sentiment Consistency Detection Based on Cross Modal Attention Fusion and#br# Information Perception [J]. Computer and Modernization, 2024, 0(10): 113-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||