[1]张亚丽. 世界卫生组织发布《2018年全球道路安全现状报告》[J]. 中华灾害救援医学, 2019,7(2):48-49.
[2]曾祥坤,张俊辉,石拓. 基于主题提取模型的交通违法行为文本数据的挖掘[J]. 电子技术应用, 2019,45(6):41-45.
[3]FELDMAN R, DAGAN I. Knowledage discovery in textual databases(KDT)[C]// Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (KDD-95). 1995,95:112-117.
[4]FRANKS B. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics[M].Wiley, 2012.
[5]NAYAK R, PIYATRAPOOMI N, WELIGAMAGE J. Application of text mining in analysing road crashes for road asset management[M]// Engineering Asset Lifecycle Management. Springer, 2010:49-58.
[6]GAO L, WU H. Verb-based text mining of road crash report[C]// Transportation Research Board the 92nd Annual Meeting. 2013:174-181.
[7]YOU J R, SANG H B. Analysis of the unstructured traffic report from traffic broadcasting network by adapting the text mining methodology[J]. The Journal of the Korea Institute of Intelligent Transport Systems, 2018,17(3):87-97.
[8]GOPALAKRISHNAN K, KHAITAN S K. Text mining transportation research grant big data: Knowledge extraction and predictive modeling using fast neural nets[J]. International Journal for Traffic and Transport Engineering (IJTTE), 2017,7(3):354-367.
[9]GASMI H, LAVAL J, BOURAS A. Information extraction of cybersecurity concepts: An LSTM approach[J]. Applied Sciences, 2019,9(19):39-45.
[10]GRAVES A, JAITLY N, MOHAMEDA R. Hybrid speech recognition with deep bidirectional LSTM[C]// 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, 2013. DOI:10.1109/ASRU.2013.6707742.
[11]赵瑞晨. 基于深度学习的铁路设备事故数据挖掘与分析[D]. 北京:北京交通大学, 2020.
[12]NGUYEN N, GUO Y. Comparisons of sequence labeling algorithms and extensions[C]// International Conference on Machine Learning. ACM, 2007:681-688.
[13]余同瑞,金冉,韩晓臻,等. 自然语言处理预训练模型的研究综述[J]. 计算机工程用, 2020,56(23):12-18.
[14]PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018:253-261.
[15]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on NeuralInformation Processing Systems. 2017:6000-6010.
[16]北京创想安科科技有限公司. 安全管理网[EB/OL]. [2021-09-21]. http://www.safehoo.com/NewsSpecial/Traffic/.
[17]贾熹滨,叶颖婕,陈军成. 基于关联规则的交通事故影响因素的挖掘[J]. 计算机科学, 2018,45(S1):447-452.
[18]张振宇. 基于自然语言理解的安全事故信息处理系统的设计与实现[D]. 北京:华北电力大学(北京), 2017.
[19]PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2014:1532-1543.
[20]ABEGAZ T, BERHANE Y, WORKUA, et al. Effects of excessive speeding and falling asleep while driving on crash injury severity in Ethiopia: A generalized ordered logit model analysis[J]. Accident Analysis & Prevention, 2014,71:15-21.
[21]WU Q, CHEN F, ZHANG G H, et al. Mixed logit model-based driver injury severity investigations in single- and multi-vehicle crashes on rural two-lane highways[J]. Accident Analysis & Prevention, 2014,72:105-115.
[22]PENG Y Y, BOYLE L N. Commercial driver factors in run-off-road crashes[J]. Transportation Research Record Journal of the Transportation Research Board, 2012,2281:128-132.
[23]DELEN D, SHARDA R, BESSONOV M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks[J]. Ergonomics, 2001,44(1):107-117.
[24]蔡娜. 女性驾驶员道路交通事故影响因素分析[D]. 北京:北京工业大学, 2010.
[25]韦瑜佳,陈梦甜. 基于网络节点重要性排序的较大交通事故影响因素分析[J]. 科技创新与应用, 2019(21):44-47.
[26]黄合来,周汉楚,潘震宇,等. 一种文本挖掘应用于道路交通事故数据处理的方法[P]. 湖南省:CN110134963A, 2019-08-16.
[27]王莉. 基于知识图谱的城市轨道交通建设安全管理智能知识支持研究[D]. 徐州:中国矿业大学, 2019.
|