[1]CHEN J R, ZHAO C X, CHEN L F. Collaborative filtering recommendation algorithm based on user correlation and evolutionary clustering[J]. Complex & Intelligent Systems, 2020,6(1):147-156.
[2]CHEN L, WU Z A, CAO J, et al. Travel recommendation via fusing multi-auxiliary information into matrix factorization[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2020,11(2):1-24.
[3]RAHMANI H A, ALIANNEJADI M, BARATCHI M, et al. Joint geographical and temporal modeling based on matrix factorization for point-of-interest recommendation[C]// European Conference on Information Retrieval(ECIR 2020). 2020:205-219.
[4]FANG X J, WANG J Y, SENG D W, et al. Recommendation algorithm combining ratings and comments[J]. Alexandria Engineering Journal, 2021,60(6):5009-5018.
[5]XIONG S F, WANG K Y, JI D H, et al. A short text sentiment-topic model for product reviews[J]. Neurocomputing, 2018,297:94-102.
[6]BEN-ABDALLAH E, BOUKADI K, HAMMAMI M. Personalized cloud service review ranking approach based on probabilistic ontology[C]// International Conference on Business Information Systems. Springer, 2019:50-61.
[7]LIU H T, WANG Y, PENG Q Y, et al. Hybrid neural recommendation with joint deep representation learning of ratings and reviews[J]. Neurocomputing, 2020,374:77-85.
[8]REN Z C, LIANG S S, LI P J, et al. Social collaborative viewpoint regression with explainable recommendations[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 2017:485-494.
[9]BARAL R, ZHU X L, IYENGAR S S, et al. Reel: Review aware explanation of location recommendation[C]// Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization. 2018:23-32.
[10]BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J].The Journal of Machine Learning Research, 2003,3:993-1022.
[11]WANG X, WANG Y, LING Y Z. Attention-guide walk model in heterogeneous information network for multi-style recommendation explanation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020,34(4):6275-6282.
[12]CHENG Z Y, DING Y, ZHU L, et al. Aspect-aware latent factor model: Rating prediction with ratings and reviews[C]// Proceedings of the 2018 World Wide Web Conference. 2018:639-648.
[13]CATHERINE R, COHEN W. Transnets: Learning to transform for recommendation[C]// Proceedings of the 11th ACM Conference on Recommender Systems. 2017:288-296.
[14]ZHANG Y F, AI Q Y, CHEN X, et al. Joint representation learning for top-n recommendation with heterogeneous information sources[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017:1449-1458.
[15]DA’U A, SALIM N, IDRIS R. An adaptive deep learning method for item recommendation system[J]. Knowledge-Based Systems, 2021,213:106681.
[16]DA’U A, SALIM N, RABIU I, et al. Recommendation system exploiting aspect-based opinion mining with deep learning method[J]. Information Sciences, 2020,512:1279-1292.
[17]CAI Y, DONG S B, HU J L. Jointly modeling user and item reviews by CNN for multi-domain recommendation[C]// China Conference on Information Retrieval. Springer, 2018:237-248.
[18]KHAN Z Y, NIU Z, YOUSIF A. Joint deep recommendation model exploiting reviews and metadata information[J]. Neurocomputing, 2020,402:256-265.
[19]XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]// International Conference on Machine Learning. PMLR, 2015:2048-2057.
[20]CHEN J Y, ZHANG H W, HE X N, et al. Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017:335-344.
[21]CHOU Y C, CHEN H Y, LIU D R, et al. Rating prediction based on Merge-CNN and concise attention review mining[J]. IEEE Access, 2020, 8:190934-190945.
[22]CHURCH K W. Word2Vec[J]. Natural Language Engineering, 2017,23(1):155-162.
[23]李琳,刘锦行,孟祥福,等. 融合评分矩阵与评论文本的商品推荐模型[J]. 计算机学报, 2018,41(7):1559-1573.
[24]SEO S Y, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]// Proceedings of the 11th ACM Conference on Recommender Systems. 2017:297-305.
[25]LIU P, ZHANG L M, GULLA J A. Dynamic attention-based explainable recommendation with textual and visual fusion[J]. Information Processing & Management, 2020,57(6):102099.
[26]WU L B, QUAN C, LI C L, et al. A context-aware user-item representation learning for item recommendation[J]. ACM Transactions on Information Systems (TOIS), 2019,37(2):1-29.
|