[1] ZHOU S F, LI J X, SHEN Z Q, et al. A night time application for a real-time vehicle detection algorithm based on computer vision[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013,5(10):3037-3043.
[2] CHEN Y L. Nighttime vehicle light detection on a moving vehicle using image segmentation and analysis techniques[J]. WSEAS Transactions on Computers, 2009,3(3):506-515.
[3] CHEN D Y, PENG Y J, CHEN L C, et al. Nighttime turn signal detection by scatter modeling and reflectance-based direction recognition[J]. IEEE Sensors Journal, 2014,14(7):2317-2326.
[4] CHIEN C L, HANG H M, TSENG D C, et al. An image based overexposed taillight detection method for frontal vehicle detection in night vision[C]// 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2016:1-9.
[5] 刘尊洋,叶庆,李菲,等. 基于亮度与颜色四阈值的尾灯检测算法[J]. 计算机工程, 2010,21(36):202-203.
[6] 祁秋红,陈启兴. 基于尾灯跟踪的夜间车辆检测[J]. 通信技术, 2012(10):58-60.
[7] CHEN D Y, PENG Y J, CHEN L C, et al. Nighttime turn signal detection by scatter modeling and reflectance-based direction recognition[J]. IEEE Sensors Journal, 2014,14(7):2317-2326.
[8] MUSLU G, BOLAT B. Nighttime vehicle tail light detection with rule based image processing[C]// 2019 Scientific Meeting on Electrical-Electronics Amp, Biomedical Engineering and Computer Science. 2019:1-4.
[9] PANICKER J V. Nighttime vehicle detection and traffic surveillance[J]. International Journal of Science and Research (IJSR), 2015,4(8):957-962.
[10]LI Y, YAO Q M. Rear lamp based vehicle detection and tracking for complex traffic conditions[C]// Proceedings of 2012 9th IEEE International Conference on Networking, Sensing and Control. 2012:387-392.
[11]郭君斌,王建强,易世春,等. 基于单目视觉的夜间前方车辆检测方法[J]. 汽车工程, 2014,36(5):573-579.
[12]霍威,王震洲. 基于HSI颜色空间的前车尾灯检测方法及研究[J]. 科技风, 2018(21):18.
[13]许远昂. 车牌定位算法与车尾灯定位研究[D]. 西安:西安电子科技大学, 2008.
[14]MING Q, JO K H. Vehicle detection using tail light segmentation[C]// Proceedings of 2011 6th International Forum on Strategic Technology. 2011:729-732.
[15]田强,孔斌,孙翠敏,等. 车辆尾灯灯语的检测与识别[J]. 计算机系统应用, 2015,24(11):213-218.
[16]VANCEA F I, COSTEA A D, NEDEVSCHI S. Vehicle taillight detection and tracking using deep learning and thresholding for candidate generation[C]// 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). 2017:267-272.
[17]CUI Z Y, YANG S W, TSAI H M. A vision-based hierarchical framework for autonomous front-vehicle taillights detection and signal recognition[C]// 2015 IEEE 18th International Conference on Intelligent Transportation Systems. 2015:931-937.
[18]WANG Z Z, HUO W, YU P P, et al. Research on vehicle taillight detection and semantic recognition based on internet of vehicle[C]// 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). 2018. DOI: 10.1109/CyberC.2018.00038.
[19]LEE K H, TAGAWA T, PAN J E M, et al. An attention-based recurrent convolutional network for vehicle taillight recognition[C]// 2019 IEEE Intelligent Vehicles Symposium (IV). 2019:2365-2370.
[20]CHEN L C, HSIEH J W, CHENG S C, et al. Robust rear light status recognition using symmetrical SURFs[C]// 2015 IEEE 18th International Conference on Intelligent Transportation Systems. 2015:2053-2058.
[21]WANG J G, ZHOU L B, PAN Y, et al. Appearance-based brake-lights recognition using deep learning and vehicle detection[C]// 2016 IEEE Intelligent Vehicles Symposium (IV). 2016:815-820.
[22]WANG J G, ZHOU L B, SONG Z W, et al. Real-time vehicle signal lights recognition with HDR camera[C]// 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). 2016:355-358.
[23]谭俊. 一个改进的YOLOv3目标识别算法研究[D]. 武汉:华中科技大学, 2018.
[24]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:91-99.
[25]DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:379-387.
[26]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
|