(1. School of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644002, China; 2. Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644002, China)
WANG Tao1, 2, HUANG Dan1, 2, LIU Chanyi1, 2, ZHU Tao1, 2. Vehicle Detection in UAV Image Based on YOLOv5s[J]. Computer and Modernization, 2024, 0(08): 108-113.
[1] CHINTALACHERUVU N, MUTHUKUMAR V. Video based vehicle detection and its application in intelligent transportation systems[J]. Journal of Transportation Technologies, 2012,2(4):305-314.
[2] SAKHARE K V, TEWARI T, VYAS V. Review of vehicle detection systems in advanced driver assistant systems[J]. Archives of Computational Methods in Engineering, 2020,27(2):591-610.
[3] 谢椿辉,吴金明,徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023,59(9):198-206.
[4] JIAO L C, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019,7:128837-128868.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:779-788.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the 14th European Conference on Computer Vision. Springer, 2016:21-37.
[7] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(2):318-327.
[8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:580-587.
[9] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:1440-1448.
[10] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[11] 鲁博,瞿绍军. 融合BiFPN和改进YOLOv3-tiny网络的航拍图像车辆检测方法[J]. 小型微型计算机系统, 2021,42(8):1694-1698.
[12] 吴靖,韩禄欣,沈英,等. 基于改进YOLOv4-tiny的无人机航拍目标检测[J]. 电光与控制, 2022,29(12):112-117.
[13] 魏子洋,赵志宏,赵敬娇. 改进Faster R-CNN算法及其在车辆检测中的应用[J]. 应用科学学报, 2020,38(3):377-387.
[14] 贺文锐. 目标检测技术在无人机航拍图像中的应用[D]. 北京:北京邮电大学, 2020.
[15] 蒋镕圻,彭月平,谢文宣,等. 嵌入scSE模块的改进YOLOv4小目标检测算法[J]. 图学学报, 2021,42(4):546-555.
[16] 宋世奇,李旭,祝雪芬,等. 基于改进SSD的航拍城市道路车辆检测方法[J]. 传感器与微系统, 2021,40(1):114-117.
[17] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:936-944.
[18] JOCHER G. YOLOv5[EB/OL]. [2023-04-27]. https://github.com/ultralytics/yolov5.
[19] ARTHUR D, VASSILVITSKII S. K-means++: The advantages of careful seeding[C]// Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, 2007:1027-1035.
[20] SUNKARA R, LUO T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects[C]// Proceedings of the 2022 European Conference on Machine Learning and Principles and Knowledge Discovery in Databases. Springer, 2023,3:443-459.
[21] 陈旭,彭冬亮,谷雨. 基于改进YOLOv5s的无人机图像实时目标检测[J]. 光电工程, 2022,49(3):67-79.
[22] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[23] 龙赛,宋晓凤,张苏,等. 改进YOLOv5s的航拍图像车辆检测研究[J]. 激光杂志, 2022,43(10):22-29.
[24] GUO G G, ZHANG Z Y. Road damage detection algorithm for improved YOLOv5[J]. Scientific Reports, 2022,12(1). DOI: 10.1038/s41598-022-19674-8.
[25] 郑玉珩,黄德启. 改进MobileViT与YOLOv4的轻量化车辆检测网络[J]. 电子测量技术, 2023,46(2):175-183.
[26] 王建波,武友新. 改进YOLOv4-tiny的安全帽佩戴检测算法[J]. 计算机工程与应用, 2023,59(4):183-190.
[27] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[28] GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021.
[29] ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(11):7380-7399.
[30] 马露茜. 基于DCNN的交通标识自动识别研究[D]. 贵阳:贵州大学, 2022.