[1] DADASHZADEH A, TARGHI A T, TAHMASBI M, et al. HGR-Net: A fusion network for hand gesture segmentation and recognition[J]. IET Computer Vision, 2019,13(8):700-707.
[2] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[3] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[4] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]// International Conference on Learning Representations. 2016:1-4.
[5] 陈淑環,韦玉科,徐乐,等. 基于深度学习的图像风格迁移研究综述[J]. 计算机应用研究, 2019,36(8):2250-2255.
[6] WANG M, DENG W H. Deep visual domain adaptation: A survey[J]. Neurocomputing, 2018,3(12):135-153.
[7] 严秋锋,王红茹,季鸣. 基于颜色均衡和椭圆模型的手势图像分割[J]. 计算机仿真, 2015,32(4):172-175.
[8] 潘丹丹,柳灿雄,聂建华. 复杂背景下的手势分割及掌心检测[J]. 工业控制计算机, 2016,29(1):109-111.
[9] 袁敏,姚恒,刘牮. 结合三帧差分和肤色椭圆模型的动态手势分割[J]. 光电工程, 2016,43(6):51-56.
[10]覃文军,杨金柱,宋相满,等. 融合GVF Snake与肤色模型的手势轮廓提取方法[J]. 小型微型计算机系统, 2013,36(6):1405-1408.
[11]范文婕,王命延,杨文姬. 基于深度图像的指尖和掌心特征提取方法[J]. 计算机应用, 2015,35(6):1791-1794.
[12]ROY K, MOHANTY A, SAHAY R. Deep learning based hand detection in cluttered environment using skin segmentation[C]// 2017 IEEE International Conference on Computer Vision. 2017:640-649.
[13]KIM Y, HWANG I, CHO N I, et al. A new convolutional network-in-network structure and its applications in skin detection[J]. arXiv preprint arXiv: 1701.06190, 2017.
[14]MINHASL K, KHAN T M, ARSALAN M, et al. Accurate pixel-wise skin segmentation using shallow fully convolutional neural network[J]. IEEE Access, 2020,13(4):1-10.
[15]景庄伟,管海燕,彭代峰,等. 基于深度神经网络的图像语义分割研究综述[J]. 计算机工程, 2020,46(10):1-17.
[16]GHIFARY M, KLEIJN W B, ZHANG M, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]// European Conference on Computer Vision. 2016:597-613.
[17]YI Z, ZHANG H, GONG P T, et al. DualGAN: Unsupervised dual learning for image-to-image translation[C]// IEEE International Conference on Computer Vision. 2017:1-17.
[18]贾颖霞,郎丛妍,冯松鹤. 基于类别相关的领域自适应交通图像语义分割方法[J]. 计算机研究与发展, 2020,57(4):876-887.
[19]PENG X, HOFFMAN J, STELLA X Y,et al. Fine-to-coarse knowledge transfer for low image classification[C]// 2016 IEEE International Conference on Image Processing. 2016:3683-3687.
[20]LIU M Y, TUZEL O. Coupled generative adversarial networks[C]// Advances in Neural Information Processing Systems. 2016:469-477.
[21]刘欢,郑庆华,罗敏楠,等. 基于跨域对抗学习的零样本分类[J]. 计算机研究与发展, 2019,56(12):2521-2535.
[22]钱小燕,肖亮,吴慧中. 快速风格迁移[J]. 计算机工程, 2006,32(21):15-17.
[23]屈时操,林晓,郑晓妹,等. 显著区域保留的图像风格迁移算法[J/OL]. 图学学报: 1-9[2021-01-17]. http://kns.cnki.net/kcms/detail/10.1034.T.20201118.1857.056.html.
[24]LI C, WAND M. Combining Markov random fields and convolutional neural networks for image synthesis[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:2479-2486.
[25]JOHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super resolution[C]// European Conference on Computer Vision. 2016:694-711.
[26]LI Y, FANG C, YANG J, et al. Universal style transfer via feature transforms[C]// Advances in Neural Information Processing Systems. 2017:386-396.
[27]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations. 2015:1-14.
[28]MATILAINEN M, SANGI P, HOLAPPA J,et al. OUHANDS database for hand detection and pose recognition[C]// 2016 6th International Conference on Image Processing Theory, Tools and Applications. 2016:1-5.
[29]王嫣然,陈清亮,吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学, 2019,46(9):36-46.
|