[1] 池亚平,凌志婷,王志强,等. 基于支持向量机与Adaboost的入侵检测系统[J]. 计算机工程, 2019,45(10):183-188.
[2] ANDERSON J P. Computer Security Threat Monitoring and Surveillance[R]. Technical Report James P Anderson Co Fort Washington Pa, 1980.
[3] 李鹏,周文欢. 基于K-means和决策树的混合入侵检测算法[J]. 计算机与现代化, 2017(12):12-16.
[4] ZHENG K, CAI Z P, ZHANG X, et al. Algorithms to speedup pattern matching for network intrusion detection systems[J]. Computer Communications, 2015,62:47-58.
[5] TAO P Y, SUN Z, SUN Z X. An improved intrusion detection algorithm based on GA and SVM[J]. IEEE Access, 2018,6:13624-13631.
[6] KUANG F J, XU W H, ZHANG S Y. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014,18:178-184.
[7] 董超,周刚,刘玉娇等. 基于改进的Adaboost算法在网络入侵检测中的应用[J]. 四川大学学报(自然科学版), 2015,52(6):1225-1229.
[8] 刘明川,彭长生. 基于机器学习的入侵检测研究[J]. 计算机工程与设计, 2008,29(11):2736-2738.
[9] SALAMA M A, EID H F, RAMADAN R A, et al. Hybrid intelligent intrusion detection scheme[M]// Soft Computing in Industrial Applications. springer, 2011:293-303.
[10]JIA Y, WANG M, WANG Y G. Network intrusion detection algorithm based on deep neural network[J]. IET Information Security, 2019,13(1):48-53.
[11]LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4):541-551.
[12]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[13]BOUVRIE J. Notes on Convolutional Neural Networks[DB/OL]. (2006-11-22)[2020-03-30].http://cogprints.org/5869/1/cnn_tutorial.pdf.
[14]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[15]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[16]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[17]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[18]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[19]王明,李剑. 基于卷积神经网络的网络入侵检测系统[J]. 信息安全研究, 2017,3(11):990-994.
[20]KWON D, NATARAJAN K, SUH S C, et al. An empirical study on network anomaly detection using convolutional neural networks[C]// Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems. 2018:1595-1598.
[21]KIM J, SHIN N, JO S Y, et al. Method of intrusion detection using deep neural network[C]// Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing. 2017:313-316.
[22]张思聪,谢晓尧,徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019,59(1):44-52.
[23]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:2999-3007.
[24]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
[25]GHIASI G, LIN T Y, LE Q V. DropBlock: A regularization method for convolutional networks[C]// Proceedings of the 32nd Conference on Neural Information Processing Systems. 2018:10750-10760.
|