Q-learning-based Algorithm for Orchestrating Security Service Function Chain
(1. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 210000, China; 2. Nanjing NARI Information & Communication Technology Co., Ltd., Nanjing 210000, China; 3. State Grid Shandong Electric Power Institute, Jinan 250003, China)
LIU Xing1, 2, GUO Liang1, 2, WANG Zhengqi1, 2, WEI Xiaogang1, 2, XU Xuefei1, 2, LIU Jing3. Q-learning-based Algorithm for Orchestrating Security Service Function Chain[J]. Computer and Modernization, 2024, 0(11): 34-40.
[1] 郝志超,龚汉卿. 2022年全球网络空间安全动态综述[J]. 中国电子科学研究院学报, 2023,18(4):392-396.
[2] 阳勇,孟相如,康巧燕,等. 基于资源需求预测的动态服务功能链迁移方法[J]. 计算机研究与发展, 2023,60(5):1151-1163.
[3] MEDHAT A M, TALEB T, ELMANGOUSH A, et al. Service function chaining in next generation network: State of the art and research challenges[J]. IEEE Communications Magazine, 2017,55(2):216-223.
[4] WU X C, HOU K Y, LENG X, et al. State of the art and research challenges in the security technologies of network function virtualization[J]. IEEE Internet Computing, 2020,24(1):25-35.
[5] 董仕. 软件定义网络安全问题研究综述[J]. 计算机科学, 2021,48(3):295-306.
[6] LUO Z Y, WU C, LI Z P, et al. Scaling geo-distributed network function chains: A prediction and learining framework[J]. IEEE Journal on Selected Areas in Communications, 2019,37(8):1838-1850.
[7] WANG L, XIE S J, CAO C, et al. Research on security service model of software defined network[C]// 2022 6th International Symposium on Computer Science and Intelligent Control (ISCSIC). IEEE, 2022:347-351.
[8] TANIGUCHI A, SHINOMIYA N. A method of service function chain configuration to minimize computing and network resoures for VNF failures[C]// Proceedings of the 2021 IEEE Region 10 Conference (TENCON). IEEE, 2021:453-458.
[9] SANTOS H, ROSARIO D, CERQUEIRA E, et al. Multi-criteria service function chaining orchestration for multi-user virtual reality services[C]// IEEE Global Communications Conference(GLOBECOM 2022). IEEE, 2022:6360-6365.
[10] GIL HERRERA J, BOTERO J F. Tabu search for service function chain composition in NFV[J]. IEEE Latin America Transactions, 2021,19(1):17-25.
[11] YUE Y, YANG W C, ZHANG X B, et al. A dynamic QoS guarantee mechanism in NFV-enabled networks[C]// 2022 IEEE International Conference on Services Computing(SCC). IEEE, 2022:271-273.
[12] LI Q, WANG X, ZHAO T, et al. An improved genetic algorithm for the scheduling of virtual network functions[C]// 2019 20th Asia-Pacific Network Operations and Management Symposium(APNOMS). IEEE, 2019. DOI: 10.23919/APNOMS.2019.8892907.
[13] YAO J J, CHEN M J. A flexible deployment scheme for virtual network function based on reinforcement learning[C]// 2020 IEEE 6th International Conference on Computer and Communications(ICCC). IEEE, 2020:1505-1510.
[14] LIU Y H, XU Z Q, YANG F, et al. Node-resource- and user-demand-aware resource allocation in NFV-enabled elastic optical networks[C]// 2021 IEEE International Conference on Communications Workshops(ICC Workshops). IEEE, 2021. DOI: 10.1109/ICCWorkshops50388.2021.94
73602.
[15] BAGAA M, TALEB T, BERNABE J B, et al. QoS and resource aware security orchestration system[C]// IEEE Global Communications Conference(GLOBECOM 2020). IEEE, 2020. DOI: 10.1109/GLOBECOM42002.2020.9348217.
[16] 姚晓辉,李青,孙焜焜. 一种域适配混合遗传算法及在安全服务链编排中的验证[J]. 电信科学, 2020,36(5):16-24.
[17] LUKOVSZKI T, ROST M, SCHMID S. It’s a match!: Near-optimal and incremental middlebox deployment[J]. ACM SIGCOMM Computer Communication Review, 2016,46(1):30-36.
[18] 徐玉伟,赵宝康,时向泉,等. 容器化安全服务功能链低延迟优化编排研究[J]. 信息网络安全, 2020,20(7):11-18.
[19] 严炜,龙长江,李善军. 基于差分量子退火算法的农用无人机路径规划方法[J]. 华中农业大学学报, 2020,39(1):180-186.
[20] 赵炳巍,贾峰,曹岩,等. 基于模拟退火算法的人工势场法路径规划研究[J]. 计算机工程与科学, 2022,44(4):746-752.
[21] 李少波,宋启松,李志昂,等. 遗传算法在机器人路径规划中的研究综述[J]. 科学技术与工程, 2020,20(2):423-431.
[22] 金月,张旭东. 深度多智能体强化学习综述[C]// 第十六届全国信号和智能信息处理与应用学术会议论文集. 中国高科技产业化研究会, 2022:104-109.
[23] 张有兵,林一航,黄冠弘,等. 深度强化学习在微电网系统调控中的应用综述[J]. 电网技术, 2023,47(7):2774-2788.
[24] HU J Y, NIU H L, CARRASCO J, et al. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020,69(12):14413-14423.
[25] 闫冬,彭国政,高海龙,等. 基于深度强化学习组合优化的配电网拓扑控制研究[J]. 电网技术, 2022,46(7):2547-2554.
[26] SHI J F, YANG H S, PAN C S, et al. Low-latency design for satellite assisted wireless VR networks[J]. IEEE Communications Letters, 2023,27(6):1555-1559.
[27] LIU Y, LI X, XU W, et al. Polyhedron-protection-oriented routing and resource allocation using Q-Learning in optical networks[C]// 2022 Asia Communications and Photonics Conference(ACP). IEEE, 2022:1097-1101.
[28] WANG S M, CHAI X Y, SONG X Q, et al. Deep Q-learning enabled wireless resource allocation for 5G network based vehicle-to-vehicle communications[C]// 2021 IEEE 6th International Conference on Signal and Image Processing(ICSIP). IEEE, 2021:903-907.
[29] BRYANT N B, CHUNG K K, FENG J, et al. Q-learning based routing in optical networks[C]// 2022 IEEE Canadian Conference on Electrical and Computer Engineering(CCECE). IEEE, 2022:419-422.
[30] SUKNUM S, THOASIRI C, JINAPORN N. Q-learning-based resource allocation in heterogeneous cellular networks[C]// 2022 International Electrical Engineering Congress(iEECON). IEEE, 2022. DOI: 10.1109/iEECON53204.
2022.9741639.
[31] YU L N, ZHANG C R, JIANG J Y, et al. Reinforcement learning approach for resource allocation in humanitarian logistics[J]. Expert Systems with Applications,2021,173. DOI: 10.1016/j.eswa.2021.114663.
[32] ZHANG X C, ZHANG L H, ZHOU Q C, et al. Greedy strategies with multiobjective optimization for investment portfolio problem modeling[J]. Computational Intelligence and Neuroscience, 2022,2022. DOI: 10.1155/2022/4862772.
[33] 李子怡,胡祥涛,张勇乐,等. 基于虚拟目标制导的自适应Q学习路径规划算法[J/OL]. 计算机集成制造系统:1-30(2023-09-14)[2023-10-12].
https://doi.org/10.13196/j.cims.2022.0733.