[1] ANDERSSON L, BRAND K P, BRUNNER C, et al. Reliability investigations for SA communication architectures based on IEC 61850[C]// Proceedings of the 2005 IEEE Russia Power Tech Conference. 2005, DOI: 10.1109/PTC.2005.4524707.
[2] ZHAO Z D, LOU Y Y, NI J H, et al. RBF-SVM and its application on reliability evaluation of electric power system communication network[C]// Proceedings of the 2009 International Conference on Machine Learning and Cybernetics. 2009,2:1188-1193.
[3] GAO H S, GUO J. Application of vulnerability analysis in electric power communication network[C]// Proceedings of the 2009 International Conference on Machine Learning and Cybernetics. 2009,4:2072-2077.
[4] 李兆桐,张卫山,郭武武. 基于LSTM的工业互联网设备工作状态预测[J]. 计算机与现代化, 2020(1):1-5.
[5] LEEMA A A, HEMALATHA M. Proposed prediction algorithms based on hybrid approach to deal with anomalies of RFID data in healthcare[J]. Egyptian Informatics Journal, 2013,14(2):135-145.
[6] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000,26(1):32-42.
[7] 李元诚,方廷健,于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003,23(6):55-59.
[8] SAFAVIAN S R, LANDGREBE D. A survey of decision tree classifier methodology[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991,21(3):660-674.
[9] 苗夺谦,王珏. 基于粗糙集的多变量决策树构造方法[J]. 软件学报, 1997,8(6):425-431.
[10]吴海洋,缪巍巍,郭波,等. 基于遗传算法的BP神经网络蓄电池寿命预测研究[J]. 计算机与数字工程, 2019,47(5):1275-1278.
[11]KRIZHEVSKY A, HINTON G. Learning Multiple Layers of Features from Tiny Images[R]. University of Toronto, 2009.
[12]DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019:4171-4186.
[13]SUN Y Q, WU Z X, WANG X, et al. Exploiting objects with LSTMs for video categorization[C]// Proceedings of the 24th ACM International Conference on Multimedia. 2016:142-146.
[14]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[15]CHEN T L, DING S J, XIE J Y, et al. ABD-Net: Attentive but diverse person re-identification[J]. arXiv preprint arXiv:1908.01114, 2019.
[16]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[17]LYU Q, ZHU J. Revisit long short-term memory: An optimization perspective[C]// Proceedings of the 2014 Workshop on Deep Learning and Representation Learning. 2014.
[18]LI Z Y, GAVVES E, JAIN M, et al. VideoLSTM convolves, attends and flows for action recognition[J]. arXiv preprint arXiv:1607.01794, 2016.
[19]WUH Y, LU X, MIAO W W, et al. Dynamic routing programming for power communication networks by recurrent neural networks based reliability prediction and particle swarm optimization[C]// Proceedings of the 5th IEEE International Conference on Advances in Electrical and Electronics, Information, Communication and Bio-Informatics (AEEICB2019). 2019:1217-1221.
[20]章鑫锋,张彩友,冯毅萍,等. 基于多粒度LSTM模型的换流站设备分析研究[C]// 第30届中国过程控制会议(CPCC 2019)论文集. 2019.
[21]DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:2625-2634.
[22]〖JP+2〗KINGMA D P, WELLING M. Auto-encodingvariational Bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
[23]ZHANG Z L, SABUNCU M R. Generalized cross entropy loss for training deep neural networks with noisy labels[C]// Proceedings of the 32nd Conference on Neural Information Processing Systems. 2018:8778-8788.
[24]FARAHNAK-GHAZANI F, BAGHSHAH M S. Multi-label classification with feature-aware implicit encoding and generalized cross-entropy loss[C]// Proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE). 2016:1574-1579.
|