WANG Jingpeng, CUI Yuyong, CAI Changlin, HE Ming’ao, LI Yinghao, TANG Zhonghe. Improved SOD Algorithm with Cross Modal Interaction and Multi Scale Aggregation[J]. Computer and Modernization, 2025, 0(11): 71-79.
[1] 闫河,沈绍兰,刘灵坤. 结合多层次监督与边界损失的显著性目标检测[J]. 计算机仿真, 2024,41(6): 293-298.
[2] 徐玉菁,李洪鹏. 基于特征残差融合的显著性检测网络[J]. 计算机应用与软件, 2024,41(5):166-196.
[3] 杨爱萍,王子麒,程思萌,等. 基于分层解码和渐进融合的快速显著性目标检测[J]. 天津大学学报, 2024,57(7):721-728.
[4] 夏晨星,陈欣雨,孙延光,等. 集成多种上下文与混合交互的显著性目标检测[J]. 电子与信息学报, 2024,46(7):2918-2931.
[5] XIA X F ,MA Y D . Cross-stage feature fusion and efficient self-attention for salient object detection[J]. Journal of Visual Communication and Image Representation,2024,104:104271.
[6] TKACZYK R, MADEJSKI G, GRADOLEWSKI D, et al. Methodological selection of optimal features for object classification based on stereovision system[J]. Sensors,2024,24(12):3941-3941.
[7] DONG X P, SHEN J B, WANG W G, et al. Dynamical hyperparameter optimization via deep reinforcement learning in tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(5) :1515-1529.
[8] LAI S M, LIU C, WANG D, et al. Refocus the attention for parameter-efficient thermal infrared object tracking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024,36(5):9538-9549.
[9] YANG X C, HUANG X L, HUANG Z Q, et al. A dynamic target tracking model for uavs based on the fusion of twin networks and deep learning[J]. Journal of Physics: Conference Series, 2024,2807(1):012030.
[10] LU X K, WANG W G, MA C, et al. See more, know more: Unsupervised video object segmentation with co-attention Siamese networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019. DOI: 10.1109/CVPR.2019.00374.
[11] LAI B S, GONG X J. Saliency guided dictionary learning for weakly-supervised image parsing[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:3630-3639.
[12] 陈福康.视觉显著性启发的视频目标分割方法研究[D]. 南京:南京理工大学, 2021.
[13] RAFI T H, MAHJABIN R, GHOSH E, et al. Domain generalization for semantic segmentation: A survey[J]. Artificial Intelligence Review, 2024,57(9):247.
[14] 白雪飞,卢立彬,王文剑.显著性引导的目标互补隐藏弱监督语义分割[J]. 中国图象图形学报,2024,29(4):1041-1055.
[15] 蒋亭亭,刘昱,马欣,等.多支路协同的RGB-T图像显著性目标检测[J].中国图象图形学报,2021,26(10): 2388-2399.
[16] ZHANG L H, ZHANG D D, SUN J Y, et al. Salient object detection by local and global manifold regularized SVM model[J]. Neurocomputing, 2019,340:42-54.
[17] TU Z Z, MA Y, LI Z, et al. RGBT salient object detection: A large-scale dataset and benchmark[J]. IEEE Transactions on Multimedia, 2022(25):4163-4176.
[18] ZHOU W J, ZHU Y, LEI J S,et al. LSNet: Lightweight spatial boosting network for detecting salient objects in RGB-thermal images[J]. IEEE Trans Imageaction on Processing,2023,32:1329-1340.
[19] WANG H, SONG K C, HUANG L M, et al.Thermal images-aware guided early fusion network for cross-illumination RGB-T salient object detection[J]. Engineering Applications of Artificial Intelligence, 2023,118:105640.
[20] LIU N, ZHANG N, HAN J W. Learning selective self-mutual attention for RGB-D saliency detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020:13753-13762.
[21] JU R, GE L, GENG W J, et al. Depth saliency based on anisotropic center-surround difference[C]// 2014 IEEE International Conference on Image Processing (ICIP). IEEE,2014:1115-1119.
[22] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition(CAPR).IEEE,2018.DOI: 10.1109/CVPR.2018.00745.
[23] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE Conference on Computer Vision and Pattern Recognition(CAPR).IEEE, 2021. DOI: 10.1109/CVPR46437.2021.01350.
[24] HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CAPR). IEEE,2016. DOI: 10.1109/CVPR.2016.90.
[25] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[26] HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CAPR).IEEE, 2017. DOI: 10.1109/CVPR.2017.243.
[27] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). Springer, 2018:3-19.
[28] WANG G Z, LI C L, MA Y P, et al. RGB-T saliency detection benchmark: Dataset, baselines, analysis and a novel approach[C]// Proceedings of the 13th Conference on Image and Graphics Technologies and Applications. Springer, 2018:359-369.
[29] TU Z Z, XIA T, LI C L, et al. RGB-T image saliency detection via collaborative graph learning[J]. IEEE Transactions on Multimedia.IEEE, 2020,22(1):160-173.
[30] PIAO Y R, JI W, LI J J, et al. Depth-induced multi-scale recurrent attention network for saliency detection[C]// Proceedings of 2019 IEEE International Conference on Computer Vision. IEEE, 2019,10(27):7254-7263.
[31] TU Z Z, LI Z, LI C L, et al. Multi-interactive dual-decoder for RGB-thermal salient object detection[J]. IEEE Transactions on Image Processing,2021,30:5678-5691.
[32] TU Z Z, XIA T, LI C L, et al. M3S-NIR: Multi-modal multi-scale noise-insensitive ranking for RGB-T saliency detection[C]// Proceedings of the 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2019. DOI: 10.1109/MIPR.2019.00032.
[33] LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 3917-3926.
[34] DENG Z J, HU X W, ZHU L, et al. R3Net: Recurrent residual refinement network for saliency detection[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. ACM, 2018: 684-690.
[35] WU Z, SU L, HUANH Q M. Cascaded partial decoder for fast and accurate salient object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 3907-3916.
[36] QIN X B,ZHANG Z C,HUANG C Y, et al. BASNet:Boundary-aware salient object detection[C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2019:7479-7489.
[37] ZHAO J X, LIU J J, FAN D P, et al. EGNet:Edge guidance network for salient object detection[C]// Proceedings of 2019 IEEE International Conference on Computer Vision. IEEE, 2019: 8779-8788.