ZHANG Jinsong, YUAN Yibo, MA Yuxin. Traffic Accident Prediction Method Based on Graph Attention and Graph Convolutional Network[J]. Computer and Modernization, 2025, 0(04): 12-18.
[1] World Health Organization. Global status report on road safety 2023[R]. Greneva:WHO, 2023:3-7.
[2] MANNERING F L, BHAT C R. Analytic methods in accident research: Methodological frontier and future directions[J]. Analytic Methods in Accident Research, 2014,1:1-22.
[3] 杨文臣,周燕宁,田毕江,等. 基于聚类分析和SVM的二级公路交通事故严重度预测[J]. 中国安全科学学报, 2022,32(5):163-169.
[4] ZENG K H, CHOU S H, CHAN F H, et al. Agent-centric risk assessment: Accident anticipation and risky region localization[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:1330-1338.
[5] MALIK N, ALTAF S, TARIQ M U, et al. A deep learning based sentiment analytic model for the prediction of traffic accidents[J]. Computers, Materials & Continua, 2023, 77(2): 1599-1615.
[6] JIN Z X, NOH B J. From prediction to prevention: Leveraging deep learning in traffic accident prediction systems[J]. Electronics, 2023,12(20). DOI: 10.3390/electronics1220
4335.
[7] HUANG B X, HOOI B, SHU K. TAP: A comprehensive data 5epository for traffic accident prediction in road networks[C]// Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems. ACM, 2023:1-4.
[8] XU D W, WANG Y D, JIA L M, et al. Real-time road traffic states estimation based on kernel-KNN matching of road traffic spatial characteristics[J]. Journal of Central South University, 2016,23(9): 2453-2464.
[9] 于翔海,白佃国,于光,等. 基于XGBoost模型的城市道路实时交通事故风险预测研究[J]. 公路交通科技, 2023,40(4):237-247.
[10] CICEK E, AKIN M, UYSAL F, et al. Comparison of traffic accident injury severity prediction models with explainable machine learning[J]. Transportation Letters, 2023,15(9): 1043-1054.
[11] ARDAKANI S P, LIANG X N, MENGISTU K T, et al. Road car accident prediction using a machine-learning-enabled data analysis[J]. Sustainability, 2023,15(7). DOI: 10.3390/su15075939.
[12] DOUGHERTY M. A review of neural networks applied to transport[J]. Transportation Research Part C: Emerging Technologies, 1995,3(4):247-260.
[13] KANCHANAMALA P, LAKSHMANAN R, MUTHU KUM
AR B, et al. AACO: Aquila anti-coronavirus optimization-based deep network for road accident and severity detection[J]. International Journal of Pattern Recognition and Artificial Intelligence,2023,37(5). DOI: 10.1142/S0218001422
520309.
[14] QU Z W, LI H T, LI Z H, et al. Short-term traffic flow forecasting method with M-B-LSTM hybrid network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020(99):1-11.
[15] NAJJAR A, KANEKO S, MIYANAGA Y. Combining satellite imagery and open data to map road safety[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. AAAI, 2017,31(1):4524-4530.
[16] 阮鸿柱,黄小弟,王金宝,等. 面向高速公路事故风险预测的深度学习方法[J]. 计算机技术与发展, 2023,33(11):189-195.
[17] 管林涛,黄志强,陈洋. 一种基于时空Transformer的交通事故预测方法[J]. 电脑与信息技术, 2022,30(1):8-13.
[18] ZHU L, LI T R, DU S D. TA-STAN: A deep spatial-temporal attention learning framework for regional traffic accident risk prediction[C]// 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1-8.
[19] 杨博,段宗涛,左鹏飞,等. 融合异构交通态势的事故预测模型[J]. 计算机应用, 2023,43(11):3625-3631.
[20] 王庆荣,周禹潼,朱昌锋,等. 时空图卷积网络下的路网交通事故风险预测[J]. 计算机工程与应用, 2023,59(13):266-272.
[21] 张延孔,卢家品,张帅超,等. 基于路网结构的城市交通事故短期风险预测方法[J]. 智能系统学报, 2020,15(4):663-671.
[22] YU L, DU B W, HU X, et al. Deep spatio-temporal graph convolutional network for traffic accident prediction[J]. Neurocomputing, 2021,423:135-147.
[23] 徐冰冰,岑科廷,黄俊杰,等. 图卷积神经网络综述[J]. 计算机学报, 2020,43(5):755-780.
[24] CHEN T, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining. ACM, 2016: 785-794.
[25] TAUD H, MAS J F. Multilayer perceptron (MLP)[M]// Geomatic Approaches for Modeling Land Change Scenarios, 2018: 451-455.
[26] FENG F L, HE X N, ZHANG H W, et al. Cross-GCN: Enhancing graph convolutional network with k-order feature interactions[J]. IEEE Transactions on Knowledge and Data Engineering, 2021,35(1): 225-236.
[27] 龚丁禧, 曹长荣. 基于卷积神经网络的植物叶片分类[J]. 计算机与现代化, 2014(4):12-15.
[28] DONG Y N, LIU Q W, DU B, et al. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2022,31:1559-1572.
[29] 夏义春,李汪根,李豆豆,等. 结合注意力机制和图神经网络的CTR预估模型[J]. 计算机与现代化, 2023(3):29-37.