LI Ming, SHI Chaoshan, WEN Guihao, LUO Yonghang, TAN Yunfei. Power Load Forecasting Based on TCN and Lightweight Autoformer[J]. Computer and Modernization, 2025, 0(04): 6-11.
[1] 董红斌,韩爽,付强. 基于AR与DNN联合模型的地理传感器时间序列预测[J]. 计算机科学, 2023,50(11):41-48.
[2] 苏佳,李高雅,张新生. 融合时空特征的GCN-LSTM西北地区沙尘天气预测模型研究[J]. 干旱区资源与环境, 2024,38(5):111-120.
[3] 孙子雨,任燃,魏曦哲. 基于DTW-TCN的股票分类及预测研究[J]. 计算机与现代化, 2023(8):31-37.
[4] GE M, ZHANG J F, WU J F, et al. ARIMA-FSVR hybrid method for high-speed railway passenger traffic forecasting[J]. Mathematical Problems in Engineering, 2021,2021(1). DOI: 10.1155/2021/9961324.
[5] WAN A P, CHANG Q, AL-BUKHAITI K, et al. Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism[J]. Energy, 2023,282. DOI: 10.10161/j.energy.2023.128274.
[6] DUDEK G, PEŁKA P. Pattern similarity-based machine learning methods for mid-term load forecasting: A comparative study[J]. Applied Soft Computing, 2021,104. DOI:
10.1016/j.asoc.2021.107223.
[7] MI J W, FAN L B, DUAN X C, et al. Short-term power load forecasting method based on improved exponential smoothing grey model[J]. Mathematical Problems in Engineering, 2018,2018(1). DOI: 10.1155/2018/3894723.
[8] PEI X Y. Prophet algorithm-based power load forecasting model[C]// 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2023:1498-1503.
[9] CHODAKOWSKA E, NAZARKO J, NAZARKO Ł. ARIMA models in electrical load forecasting and their robustness to noise[J]. Energies, 2021,14(23). DOI: 10.3390/en1423
7952.
[10] ZULFIQAR M, KAMRAN M, RASHEED M B, et al. Hyperparameter optimization of support vector machine using adaptive differential evolution for electricity load forecasting[J]. Energy Reports, 2022,8:13333-13352.
[11] LARA-BENÍTEZ P, CARRANZA-GARCÍA M, RIQUELM
E J C. An experimental review on deep learning architectures for time series forecasting[J]. International Journal of Neural Systems, 2021,31(3). DOI: 10.1142/S0129065721
300011.
[12] JALALI S M J, AHMADIAN S, KHOSRAVI A, et al. A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting[J]. IEEE Transactions on Industrial Informatics, 2021,17(12):8243-8253.
[13] KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019,10(1): 841-851.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[15] 张淑娴,江文韬,陈玉花,等. 基于二次模态分解的LSTM短期电力负荷预测[J].科学技术与工程, 2024,24(7):2759-2766.
[16] 尹春杰,肖发达,李鹏飞,等. 基于LSTM神经网络的区域微网短期负荷预测[J]. 计算机与现代化, 2022(4):7-11.
[17] 崔星,李晋国,张照贝,等. 基于改进粒子群算法优化LSTM的短期电力负荷预测[J].电测与仪表,2024,61(1):131-136.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:6000-6010.
[19] LIN T Y, WANG Y X, LIU X Y, et al. A survey of transformers[J]. AI Open, 2022,3:111-132.
[20] LI S Y, JIN X Y, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. ACM, 2019, 471:5243-5253.
[21] KITAEV N, KAISER Ł, LEVSKAYA A. Reformer: The efficient transformer[J]. arXiv preprint arXiv:2001.04451,
2020.
[22] WU H X, XU J H, WANG J M, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. ACM, 2021:22419-22430.
[23] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:1803.01271, 2018.
[24] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[J]. arXiv preprint arXiv:1511.07289, 2015.
[25] ZHANG X, YOU J L. A gated dilated causal convolution based encoder-decoder for network traffic forecasting[J]. IEEE Access, 2020,8:6087-6097.
[26] ZHANG L, NA J M, ZHU J, et al. Spatiotemporal causal convolutional network for forecasting hourly PM2. 5 concentrations in Beijing, China[J]. Computers & Geosciences, 2021,155. DOI: 10.1016/j.cageo.2021.104869.
[27] WOO G, LIU C H, SAHOO D, et al. ETSformer: Exponential smoothing transformers for time-series forecasting[J]. arXiv preprint arXiv:2202.01381,2022.
[28] LIU M H, ZENG A L, CHEN M X, et al. SCINet: Time series modeling and forecasting with sample convolution and interaction[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. ACM, 2022,35:5816-5828.