Improved Mayfly Algorithm for Integrated of Process Planning and Scheduling
(1. School of Mathematics and Information, China West Normal University, Nanchong 637009, China; 2. Sichuan Colleges and Universities Key Laboratory of Optimization Theory and Applications, China West Normal University, Nanchong 637009, China)
YANG Ke1, PAN Dazhi1, 2, CHI Ying1. Improved Mayfly Algorithm for Integrated of Process Planning and Scheduling[J]. Computer and Modernization, 2024, 0(04): 92-98.
[1] CHRYSSOLOURIS G, CHAN S, COBB W. Decision making on the factory floor: An integrated approach to process planning and scheduling[J]. Robotics and Computer-Integrated Manufacturing, 1984,1(3-4):315-319.
[2] KIM Y K, PARK K, KO J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling[J]. Computers and Operations Research, 2003,30(8):1151-1171.
[3] OZGUVEN C, OZBAKIR L, YAVUZ Y. Mathematical models for job-shop scheduling problems with routing and process plan flexibility[J]. Applied Mathematical Modelling, 2010,34(6):1539-1548.
[4] WONG T N, ZHANG S C, WANG G, et al. Integrated process planning and scheduling: Multi-agent system with two-stage ant colony optimisation algorithm[J]. International Journal of Production Research, 2012,50(21):6188-6201.
[5] ZHANG S C, WONG T N. Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach[J]. International Journal of Production Research, 2017,55(11):3173-3196.
[6] 黄学文,张晓彤,艾亚晴. 基于蚁群算法的多加工路线柔性车间调度问题[J]. 计算机集成制造系统, 2018,24(3):558-569.
[7] 杜轩,潘志成. 聚类差分进化算法求解多目标工艺规划与调度集成问题[J]. 计算机集成制造系统, 2019,25(7):1729-1738.
[8] ZERVOUDAKIS K, TSAFARAKIS S. A mayfly optimization algorithm[J]. Computers and Industrial Engineering, 2020,145. DOI: 10.1016/j.cie.2020.106559.
[9] 王义,张达敏,邹诚诚. 增强全局搜索和自适应蜉蝣算法[J]. 哈尔滨工业大学学报, 2022,54(11):137-150.
[10] 徐焕增,徐文倩,孔政敏. 基于Tent混沌序列改进的蜉蝣算法及其应用[J]. 控制工程, 2022,29(3):435-440.
[11] LEUNG C W, WONG T N, MAK K L, et al. Integrated process planning and scheduling by an agent-based ant colony optimization[J]. Computers and Industrial Engineering, 2010,59(1):166-180.
[12] JIN L L, TANG Q H, ZHANG C Y, et al. More MILP models for integrated process planning and scheduling[J]. International Journal of Production Research, 2016,54(14):4387-4402.
[13] TSENG H E. Guided genetic algorithms for solving a larger constraint assembly problem[J]. International Journal of Production Research, 2006,44(3):601-625.
[14] ZHANG G H, GAO L, SHI Y. An effective genetic algorithm for the flexible job-shop scheduling problem[J]. Expert Systems with Applications, 2011,38(4):3563-3573.
[15] ZHANG L P, WONG T N. Solving integrated process planning and scheduling problem with constructive meta-heuristics[J]. Information Sciences, 2016,340-341:1-16.
[16] 田旻,张光军,刘人境. 粒子群遗传混合算法求解考虑传输时间的FJSP[J]. 运筹与管理, 2019,28(4):78-88.
[17] QIAO L H, LV S P. An improved genetic algorithm for integrated process planning and scheduling[J]. The International Journal of Advanced Manufacturing Technology, 2012,58(5-8):727-740.
[18] LV S P, LIU W. A cross-entropy-based approach for joint process plan selection and scheduling optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016,230(8):1525-1536.
[19] 陈琳,王子微,莫玉良,等. 改进的自适应复制、交叉和突变遗传算法[J]. 计算机仿真, 2022,39(8):323-326.
[20] WEN X Y, LIAN X N, QIAN Y J, et al. Dynamic scheduling method for integrated process planning and scheduling problem with machine fault[J]. Robotics and Computer-Integrated Manufacturing, 2022,77. DOI: 10.1016/j.rcim.2022.102334.
[21] 文笑雨,罗国富,李浩,等. 两阶段混合算法求解集成工艺规划与调度问题[J].中国机械工程, 2018,29(22):2716-2724.
[22] KASHAN A H, KARIMI B. A discrete particle swarm optimization algorithm for scheduling parallel machines[J]. Computers and Industrial Engineering, 2009,56(1):216-223.
[23] 罗浩嘉,潘大志. 改进布谷鸟算法求解双资源约束柔性车间调度问题[J]. 计算机应用研究, 2022,39(8):2295-2300.
[24] 丁舒阳,黎冰,侍洪波. 基于改进的离散PSO算法的FJSP的研究[J]. 计算机科学, 2018,45(4):233-239.
[25] MAHMOODJANLOO M, TAVAKKOLI-MOGHADDAMA R, BABOLI A, et al. Distributed job-shop rescheduling problem considering reconfigurability of machines: A self-adaptive hybrid equilibrium optimiser[J]. International Journal of Production Research, 2022,60(16):4973-4994.
[26] GONG G L, DENG Q W, GONG X R, et al. A non-dominated ensemble fitness ranking algorithm for multi-objective flexible job-shop scheduling problem considering worker flexibility and green factors[J]. Knowledge-Based Systems, 2021,231:107430.1-107430.13.
[27] 方丹,江志刚,鄢威. 基于多层级优化模型的绿色车间分批调度方法[J]. 制造业自动化, 2023,45(3):81-86.
[28] 杨博见,杜丽,郭景仁. 基于多Agent的柔性作业车间动态调度方法研究[J]. 航空制造技术, 2023,66(6):99-107.