YANG Ju, DENG Zhiliang, YANG Zhiqiang, WANG Yan, ZHAO Zhongyuan. Decentralized Federation Learning Based on Fed-DPDOBO[J]. Computer and Modernization, 2024, 0(04): 99-106.
[1] 罗向龙,焦琴琴,牛力瑶,等. 基于深度学习的短时交通流预测[J]. 计算机应用研究, 2017,34(1):91-93.
[2] TIAN Z H, GAO X S, SU S, et al. Evaluating reputation management schemes of Internet of vehicles based on evolutionary game theory[J]. IEEE Transactions on Vehicular Technology, 2019,68(6):5971-5980.
[3] 周润佳. 基于深度学习的股票趋势预测算法[J]. 计算机与现代化, 2023(1):69-73.
[4] QI E N, DENG M. R&D investment enhance the financial performance of company driven by big data computing and analysis[J]. International Journal of Computer Systems Science and Engineering, 2019,34(4):237-248.
[5] ZHANG J H, YIN Z, CHEN P, et al. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review[J]. Information Fusion, 2020,59:103-126.
[6] YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019,10(2). DOI: 10.1145/3298981.
[7] 杨强. AI与数据隐私保护:联邦学习的破解之道[J]. 信息安全研究, 2019,5(11):961-965.
[8] 王健宗,孔令炜,黄章成,等. 联邦学习算法综述[J]. 大数据, 2020,6(6):64-82.
[9] LIM H K, KIM J B, ULLAH I, et al. Federated reinforcement learning acceleration method for precise control of multiple devices[J]. IEEE Access, 2021,9:76296-76306.
[10] WANG S Q, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6):1205-1221.
[11] 张斯杰. 基于同态加密与RingAllreduce的去中心化联邦学习[J]. 电脑知识与技术, 2021,17(34):25-27.
[12] MA J, ZHANG Q C, LOU J, et al. Communication efficient federated generalized tensor factorization for collaborative health data analytics[C]// Proceedings of the Web Conference 2021. ACM, 2021:171-182.
[13] 王晋东,张明清,韩继红. 信息系统安全技术策略研究[J]. 计算机应用研究, 2001,18(5):61-63.
[14] PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018,13(5):1333-1345.
[15] DWORK C. Differential privacy[C]// Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP). Springer, 2006:1-12.
[16] WEI K, LI J, DING M, et al. Federated learning with differential privacy: Algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security, 2020,15:3454-3469.
[17] TRUEX S, LIU L, CHOW K H, et al. LDP-Fed: Federated learning with local differential privacy[C]// Proceedings of the 3rd ACM International Workshop on Edge Systems, Analytics and Networking. ACM, 2020:61-66.
[18] WANG C, XU S Y, YUAN D M, et al. Push-sum distributed online optimization with bandit feedback[J]. IEEE Transactions on Cybernetics, 2022,52(4):2263-2273.
[19] PANG Y P, HU G Q. Randomized gradient-free distributed optimization methods for a multiagent system with unknown cost function[J]. IEEE Transactions on Automatic Control, 2020,65(1):333-340.
[20] YAN J E, WANG Y, LI W L. Behavior sequence mining model based on local differential privacy[J]. IEEE Access, 2020,8:196086-196093.
[21] FLAXMAN A D, KALAI A T, MCMAHAN H B. Online convex optimization in the bandit setting: Gradient descent without a gradient[C]// Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, 2005:385-394.
[22] XI C G, KHAN U A. Distributed subgradient projection algorithm over directed graphs[J]. IEEE Transactions on Automatic Control, 2017,62(8):3986-3992.
[23] NEDIC A, OZDAGLAR A, PARRILO P A. Constrained consensus and optimization in multi-agent networks[J]. IEEE Transactions on Automatic Control, 2010,55(4):922-938.
[24] ISLAM M J, AHMAD S, HAQUE F, et al. Application of min-max normalization on subject-invariant EMG pattern recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2022,71. DOI: 10.1109/TIM.2022.3220286.
[25] ZHANG Z, ZHANG Y, GUO D, et al. Communication-efficient federated continual learning for distributed learning system with non-IID data[J]. Science China Information Sciences, 2023,66. DOI: 10.1007/s11432-020-3419-4.
[26] YOSHIDA N, NISHIO T, MORIKURA M, et al. Hybrid-FL for wireless networks: Cooperative learning mechanism using non-IID data[C]// Proceedings of the 2020 IEEE International Conference on Communications (ICC). IEEE, 2020. DOI: 10.1109/ICC40277.2020.9149323.
[27] LI X C, ZHAN D C. FedRS: Federated learning with restricted softmax for label distribution non-IID data[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2021:995-1005.