ZHU Hong-qi, WANG Cheng. Application Research of Implicit Feedback Recommendation Based on E-commerceUser Behavior[J]. Computer and Modernization, 2023, 0(11): 44-50.
[1] 于文莲. 网络环境下的信息过载研究[J]. 农业图书情报学刊, 2008,20(11):51-54.
[2] 陈丹,郭伟青. 搜索引擎技术分析与研究[J]. 计算机系统应用, 2008,17(3):23-26.
[3] 印鉴,陈忆群,张钢. 搜索引擎技术研究与发展[J]. 计算机工程, 2005(14):63-65.
[4] 刘建国,周涛,汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009,19(1):1-15.
[5] 刘鲁,任晓丽. 推荐系统研究进展及展望[J]. 信息系统学报, 2008(1):82-90.
[6] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM,1997,40(3):56-58.
[7] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-based Systems, 2013,46(1):109-132.
[8] OARD D W, KIM J. Implicit feedback for recommender systems[C]// Proceedings of the AAAI Workshop on Recommender Systems. 1998:81-83.
[9] JAWAHEER G,WELLER P, KOSTKOVA P. Modeling user preferences in recommender systems:A classification framework for explicit and implicit user feedback[J].ACM Transactions on Interactive Intelligent Systems(TiiS),2014,4(2):8.1-8.26.
[10] PAN R,ZHOU Y H,CAO B,et al.One-class collaborative filtering[C]∥ Proceedings of the 8th IEEE International Conference on Data Mining. IEEE,2008:502-511.
[11] PAN W K, CHEN L. GBPR: Group preference based Bayesian personalized ranking for one-class collaborative filtering[C]// Proceedings of the 23rd International Joint Conference on ArtificialIntelligence. 2013:2691-2697.
[12] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 2009:452-461.
[13] 张云洲. 单类协同过滤推荐算法的研究[D]. 合肥:中国科学技术大学, 2018.
[14] ZHANG W N, CHEN T Q, WANG J, et al. Optimizing top-n collaborative filtering via dynamic negative item sampling[C]// Proceedings of the 36th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,2013:785-788.
[15] BURGES C J C. From RankNet to LambdaRank to LambdaMART : An Overview[R] . Microsoft Research Technical Report MSR-TR-2010-82, 2010.
[16] GUO W Y, WU S, WANG L, et al. Personalized ranking with pairwise factorization machines[J]. Neurocomputing, 2016,214(19):191-200.
[17] 汪志远. 基于商品内容和用户行为反馈的BPR算法研究[D]. 上海:东华大学, 2021.
[18] MAO X D, LI Q, XIE H R, et al. Popularity tendency analysis of ranking-oriented collaborative filtering from the perspective of loss function[C]// International Conference on Database Systems for Advanced Applications. Springer, 2014:451-465.
[19] GUO Y H, WANG X, XU C F. CroRank: Cross domain personalized transfer ranking for collaborative filtering[C]// 2015 IEEE International Conference on Data Mining Workshop(ICDMW). IEEE, 2015:1204-1212.
[20] RENDLE S, SCHMIDT-THIEME L. Pairwise interaction tensor factorization for personalized tag recommendation[C]// Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. ACM, 2010:81-90.
[21] KANAGAL B, AHMED A, PANDEY S, et al. Supercharging recommender systems using taxonomies for learning user purchase behavior[J]. Proceedings of the VLDB Endowment, 2012,5(10):956-967.
[22] 曹朝阳. 基于隐语义模型的群组推荐算法研究[D]. 郑州:郑州大学, 2020.
[23] NGUYEN J, ZHU M. Content-boosted matrix factorization techniques for recommender systems[J]. Statistical Analysis & Data Mining, 2013,6(4):286-301.
[24] ABDI M H, OKEYO G O, MWANGI R W, et al. Matrix factorization techniques for context-aware collaborative filtering recommender systems: A survey[J]. Computer and Information Science, 2018,11(2):1-11.
[25] 刘慧婷,陈艳,肖慧慧. 基于用户偏好的矩阵分解推荐算法[J]. 计算机应用, 2015(0z2):118-121.
[26] 张航,叶东毅. 一种基于多正则化参数的矩阵分解推荐算法[J]. 计算机工程与应用, 2017(3):74-79.
[27] 申艳梅,姜冰倩,敖山,等. 基于遗忘函数的均值贝叶斯个性化排序算法研究[J]. 计算机应用研究, 2021,38(5):1350-1354.
[28] 郑州轻工业大学. 一种基于深度学习的推荐算法库:CN202110868848.6[P]. 2021-11-02.
[29] PAN W K, ZHONG HAO, XU C F, et al. Adaptive Bayesian personalized ranking for heterogeneous implicit feedbacks[J]. Knowledge-Based Systems, 2015,73:173-180.
[30] 张恒. 基于用户动态偏好的异构隐式反馈推荐算法研究[D]. 杭州:浙江大学, 2017.
[31] CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016:785-794.
[32] 黄辉. 基于“用户-标签”网络的问答社区专家发现方法研究[D]. 武汉:武汉理工大学, 2019.