An Importance Assessment Method of Network Assets in Critical Information Infrastructure Based on Percolation Theory
(1. School of Cyberspace Security, Chengdu University of Information Engineering, Chengdu 610225, China; 2. Sichuan Key Laboratory of Advanced Cryptography and System Security, Chengdu 610225, China; 3. Anhui Key Laboratory of Cyberspace Security Situational Awareness and Assessment, Hefei 230037, China)
HUANG Yu-ting, CHEN Lin, LIN Hong-gang, . An Importance Assessment Method of Network Assets in Critical Information Infrastructure Based on Percolation Theory[J]. Computer and Modernization, 2023, 0(11): 51-56.
[1] 沈昌祥. 按照《关键信息基础设施安全保护条例》筑牢网络空间安全底线[J]. 信息安全研究, 2021,7(10):890-893.
[2] 《信息网络安全》编辑部. “国家标准《信息安全技术 关键信息基础设施网络安全保护基本要求》(报批稿)试点工作启动会”在京召开[J]. 信息网络安全, 2020,20(1):96.
[3] ALMOGHATHAWI Y, BARKER K, ROCCO C M, et al. A multi-criteria decision analysis approach for importance identification and ranking of network components[J]. Reliability Engineering & System Safety, 2017,158:142-151.
[4] ABDEL‐MOTTALEB N, GHASEMI SAGHAND P, CHARK
HGARD H, et al. An exact multiobjective optimization approach for evaluating water distribution infrastructure criticality and geospatial interdependence[J]. Water Resources Research, 2019,55(7):5255-5276.
[5] ALMOGHATHAWI Y, BARKER K, ALBERT L A. Resil-
ience-driven restoration model for interdependent infrastructure networks[J]. Reliability Engineering & System Safety, 2019,185:12-23.
[6] LUO L, LI M H, ZHANG Z L, et al. Identifying important nodes based on upstream and downstream time-respecting paths in temporal networks[J]. Modern Physics Letters B, 2021,35(23):2150403. DOI: 10.1142/S0217984921504030.
[7] WILLIAMS J B. Critical flow centrality measures on interdependent networks with time-varying demands[J]. International Journal of Critical Infrastructure Protection, 2021,35:100462. DOI: 10.1016/j.ijcip.2021.100462.
[8] 刘小雪. 关键基础设施网络信息-物理威胁模型与安全机制研究[D]. 长沙:国防科技大学, 2019.
[9] 杨宏宇,袁海航,张良. 基于攻击图的主机安全评估方法[J]. 通信学报, 2022,43(2):89- 99.
[10] 唐梓淳,沈也明. 基于客观赋权的网络资产重要性评估方法[J]. 网络安全技术与应用, 2021(4):40-42.
[11] 汪黎明. 基于深度强化学习的复杂网络关 键 节 点 识 别[D]. 蚌埠:安徽财经大学, 2020.
[12] 朱庆存. 基于网络中心性算法的关键节点 识 别 方 法 研 究[D]. 济南:齐鲁工业大学, 2021.
[13] 刘同林,杨芷柔,张虎,等. 基于复杂网络的军事通信网络建模与性能分析[J]. 系统工程与电子技术, 2020,42(12):2892-2898.
[14] MILANOVIC J V, ZHU W T. Modeling of interconnected critical infrastructure systems using complex network theory[J]. IEEE Transactions on Smart Grid, 2018,9(5):4637-4648.
[15] 刘欣,徐桂琼,杨平乐. 基于组合赋权VIKOR 方法的网络节点重要性评价[J]. 计算机 应 用 研 究, 2019,36(8):2368-2371.
[16] 袁闽杰,谢军,林志勇,等. 相依网络下加权电力通信网节点重要度 评 估 [J]. 电力科学与技术学报, 2021,36(5):129-136.
[17] 刘浩然,王星淇,邓玉静,等. 基于级联失效的有向无标度网络节点重要度评价模型[J]. 电信科学, 2020,36(2):43-51.
[18] NEWMAN M E J. The spread of epidemic disease on networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(1 Pt 2):016128. DOI: 10.1103/PhysRevE.66.016128
[19] 张李盈,任景莉. 渗流理论、方法、进展及存在问题[J]. 自然杂志, 2019,41(2):119-131.
[20] QIU Z H, FAN T, LI M, et al. Identifying vital nodes by Achlioptas process[J]. New Journal of Physics, 2021,23(3): 033036. DOI: 10.1088/1367-2630/abe971.
[21] LI M, LIU R R, LÜL Y, et al. Percolation on complex networks: Theory and application[J]. Physics Reports, 2021,907:1-68.
[22] PIRAVEENAN M, PROKOPENKO M, HOSSAIN L, et al. Percolation centrality: Quantifying graph-theoretic impact of nodes during percolation in networks[J]. PloS one, 2013,8:e53095. DOI:10.1371/journal.pone.0053095.
[23] 韩宇奇,郭创新,朱炳铨,等. 基于改进渗流理论的信息物理融合电力系统连锁故障模型[J]. 电力系统自动化, 2016,40(17):30-37.
[24] 贾春晓,李明,刘润然. 多层复杂网络上的渗流与级联失效动力学[J]. 电子科技大学学报, 2022,51(1):148-160.
[25] BARABÁSI A L, ALBERT R, JEONG H. Mean-field theory for scale-freerandom networks[J]. Physica A: Statistical Mechanics and Its Applications, 1999,272(1-2):173-187.
[26] CHEN Z H, WU J J, XIA Y X, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017,65(1):115-119.