计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 32-37.doi: 10.3969/j.issn.1006-2475.2025.12.005

• 人工智能 • 上一篇    下一篇

基于日志挖掘的个性化文献推荐算法

  


  1. (中国科学技术信息研究所,北京 100038) 
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:张亚(1995—),女,山东菏泽人,助理研究员,硕士,研究方向:数据挖掘,推荐算法,数字图书馆,E-mail: zy@istic.ac.cn; 白海燕(1973—),女,河北秦皇岛人,研究馆员,硕士,研究方向:信息组织,数字图书馆,知识组织系统,E-mail: bhy@istic.ac.cn; 孟旭阳(1993—),女,河南洛阳人,助理研究员,硕士,研究方向:自然语言处理,数字图书馆,E-mail: mengxy@istic.ac.cn。
  • 基金资助:
    基金项目:中国科学技术信息研究所创新研究基金青年项目(QN2024-15)
      

Personalized Literature Recommendation Algorithm Based on Log Mining


  1. (Institute of Scientific and Technical Information of China, Beijing 100038, China)
  • Online:2025-12-18 Published:2025-12-18

摘要:
摘要:近年来,个性化推荐技术的探索在推荐系统研究领域中日益占据核心地位,其中,文献推荐作为这一领域的一个重要分支,正受到越来越多的关注与深入研究。针对目前科技文献发现系统中文献推荐算法未考虑用户行为偏好,及因用户数据稀疏导致大量用户无法获得文献推荐的问题,本文提出一种基于日志挖掘的个性化文献推荐算法。首先将用户行为记录日志初始化为用户-文献评分矩阵;然后,在深入分析用户兴趣偏好的过程中,综合考虑全局项目特征与地方评分信息,利用海明贴近度原理设计一种用户兴趣偏好相似度算法;最后,将该算法与加权JMSD相似度算法相融合,以此扩大推荐算法覆盖范围,进而大大提高推荐结果精度。实验采用NSTL文献服务系统实际用户行为日志数据,实验结果表明,该算法的总体表现优于其他基线算法,在Precision、Recall和F1这3个指标上平均提升0.8%、3.2%和1.9%,验证了本文推荐算法的有效性。该研究成果可应用到文献发现平台,进一步强化文献信息资源服务的智能化水平。


关键词: 关键词:日志挖掘, 用户偏好, 稀疏性, 个性化推荐, 全局特征, 推荐系统

Abstract: Abstract: In recent years, the exploration of personalized recommendation technology has increasingly occupied the core position in the field of recommendation system research. Among them, literature recommendation, as an important branch of this field, is receiving more and more attention and in-depth research. For the problems of that the current scientific and the literature recommendation algorithm in technological literature discovery system do not take into account the user’s behavior preferences and a large number of users cannot be recommended with literature due to sparse user data, this study proposes a personalized literature recommendation algorithm based on log mining. First of all, this study initializes the user behavior record log into a user-literature scoring matrix, and then in the process of in-depth analysis of user interest preferences, comprehensively considers the characteristics of global projects and local scoring information, and designs a user interest preference algorithm with the principle of Haiming’s closeness. Finally, the algorithm is fused with the weighted JMSD similarity algorithm to expand the coverage of the recommendation algorithm, and then greatly improve the accuracy of the recommendation results. The actual user behavior log data of NSTL literature service system was used in the experiment. The experimental results show that the algorithm’s overall performance is better than other baseline algorithms, with an average improvement of 0.8%, 3.2% and 1.9% in Precision, Recall and F1, which verified the effectiveness of the proposed algorithm. The research results can be applied to the literature discovery platform to further strengthen the intelligent level of document information resource service. 

Key words: Key words: log mining, user preferences, sparseness, personalized recommendation, global feature, recommender systems

中图分类号: