计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 67-72.doi: 10.3969/j.issn.1006-2475.2025.10.011

• 人工智能 • 上一篇    下一篇

基于两阶段的多重注意力机制网络的胰腺分割

  


  1. (1.湖南中医药大学信息科学与工程学院,湖南 长沙 410208; 2.湖南中医药大学中医学院,湖南 长沙 410208)
  • 出版日期:2025-10-27 发布日期:2025-10-28
  • 作者简介: 作者简介:周邦湲(2000—),女,贵州六盘水人,硕士研究生,研究方向:人工智能,E-mail: 20223665@stu.hnucm.edu.cn; 通信作者:辛国江(1979—),男,辽宁大连人,副教授,博士,研究方向:医学图像处理,E-mail: guojiang_xin@hnucm.edu.cn。
  • 基金资助:
      基金项目:湖南中医药大学牵头研究项目(2022XJJB002); 湖南省科技创新计划项目(2022RC1021); 湖南省自然科学基金资助项目(2023JJ60124); 长沙市自然科学基金资助项目(kq2202265)
       

Pancreas Segmentation Based on Two-stage Network of Multiple Attention Mechanisms


  1. (1. School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China;
    2. School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China)
  • Online:2025-10-27 Published:2025-10-28

摘要:
摘要:胰腺分割在计算机辅助诊断胰腺疾病中具有重要意义。胰腺具有体积小、个体差异大和边缘模糊的特点,因此胰腺分割任务具有极大的挑战性。为了解决上述问题,本文提出一种基于两阶段的多重注意力机制网络。首先,针对背景与目标不平衡这一问题,本文使用两阶段的分割方法,利用粗分割阶段裁剪出候选区域作为精细分割阶段的输入,以减少背景对分割胰腺目标的干扰。其次,设计双通道注意力机制模块并添加到解码器中,以增强模型对胰腺特征的表示能力,还引入压缩与激励注意力模块(SE Module),利用其自适应的注意力机制来适应不同形状大小的胰腺。最后,通过使用卷积注意力模块(CBAM)加强编码器与解码器之间的信息传递,提高模型的分割精度。在NIH数据集上对本文的方法进行测试,结果表明,所提方法具有较好的性能,能够有效解决胰腺在腹部CT图像中难以分割的问题。

关键词: 关键词:胰腺分割, 两阶段, 注意力机制, 双通道注意力机制模块, 卷积注意力模块

Abstract:
Abstract:Pancreas segmentation is of great significance in computer-aided diagnosis of pancreatic diseases. The pancreas is characterized by small size, large individual differences, and blurred margins, so the task of pancreas segmentation is extremely challenging. To solve the above problems, this paper proposes a new network based on two-stage multi-attention mechanism. Firstly, in order to solve the problem of imbalance between the background and the target, this paper uses a two-stage segmentation method to use the coarse segmentation stage to clip out the candidate region as the input of the fine segmentation stage. Secondly, for the problem of large individual differences in the pancreas, the channel attention mechanism block is designed to the decoder, and the Squeeze and Excited Attention Module(SE Module) is also introduced to adapt to different shapes and sizes of pancreas by using its adaptive attention mechanism. Finally, the Convolutional Attention Module (CBAM) is used to strengthen the information transmission between the encoder and the decoder to improve the segmentation accuracy of the model. The proposed method is tested on the NIH dataset, and the results show that the proposed method has good performance and can effectively solve the problem that the pancreas is difficult to segment in abdominal CT images.

Key words: Key words: pancreas segmentation, two-stage, attention mechanisms, dual-channel attention mechanism block, CBAM

中图分类号: