计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 1-6.doi: 10.3969/j.issn.1006-2475.2025.10.001

• 图像处理 •    下一篇

基于深度学习的厂区人员异常行为识别轻量化模型

  


  1. (1.青岛科技大学自动化与电子工程学院,山东 青岛 266061; 2.山东新华制药股份有限公司,山东 淄博 255000)
  • 出版日期:2025-10-27 发布日期:2025-10-27
  • 作者简介: 作者简介:刘龙恩(2000 —),男,山东聊城人,硕士研究生,研究方向:模式识别与机器视觉,E-mail: l.n.liu@outlook.com; 通信作者:徐啟蕾(1980 —),女,山东青岛人,副教授,博士,研究方向:图像处理,E-mail: xuqilei@qust.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(62103216)
      

Lightweight Model for Recognizing Abnormal Behavior in Factory Personnel Based on Deep Learning


  1. (1. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061,China; 2. Shandong Xinhua Pharmaceutical Co., Ltd., Zibo 255000 China)
  • Online:2025-10-27 Published:2025-10-27

摘要:
摘要:针对厂区人员异常行为识别中背景复杂、计算成本受限等问题,本文提出一种基于YOLOv5的轻量级工厂人员异常行为识别网络。该网络结合全维动态卷积模块(Omni-dimensional Dynamic Convolution, ODConv)和显式视觉中心模块(Explicit Visual Center Block, EVCBlock),以更低的参数计算量实现更好的检测表现。在颈部网络中引入的ODConv模块增强模型对复杂工厂环境的适应性,并减少模型参数量。在骨干网络末端增加的EVCBlock模块主要目的是提高模型的检测精度,以弥补参数降低给模型带来过量的精度损失。此外,利用归一化Wasserstein距离(Normalized Wasserstein Distance, NWD)构建改进的损失函数,优化模型的训练过程并提高对小目标的检测效果。为了验证模型性能,本文利用现有的轻量化方法额外构建多种改进的识别模型。对比实验的结果表明,与现有方法相比本文提出的轻量级识别模型具有更好的检测精度,同时模型参数比原始模型更少。相比原始模型,本文构建检测模型的mAP提升了3.2个百分点,GFLOPs下降了2.2。该模型对实现工业生产场景中工厂人员异常行为的快速检测和准确识别有重要意义。


关键词: 关键词:轻量级识别模型, 异常行为识别, YOLOv5, 全维动态卷积, 显式视觉中心

Abstract:
Abstract: This paper proposes an improved lightweight network for recognizing abnormal behavior among factory personnel based on YOLOv5, to addressing challenges such as complex backgrounds and limited computational resources. This network integrates Omni-dimensional Dynamic Convolution (ODConv) and the Explicit Visual Center Block (EVCBlock), resulting in improved detection performance while reducing parameter computation. The ODConv module is introduced in the neck network to  enhance the model’s adaptability to complex factory environments and decrease the number of model parameters, while the EVCBlock module is added at the end of the backbone network to improve the detection accuracy of the model and compensate for accuracy loss of model caused by the reduction of parameters. The Normalized Wasserstein Distance (NWD) loss is constructed to optimize the model training process and enhance the model’s detection performance on small targets. Several enhanced detection models are constructed based on existing lightweight methods to compare detection accuracy and parameter count. Results demonstrate that the proposed lightweight recognition model has fewer parameters while maintaining high detection accuracy compared with the existing methods. Compared with the original model, the mAP of the detection model built in this paper increases by 3.2 percentage points and GFLOPs decreases by 2.2. This work is of guiding significance to realize rapid detection and accurate identification of factory personnel’s abnormal behavior in industrial production scenarios.

Key words: Key words:lightweight model, abnormal behavior detection, YOLOv5, omni-dimensional dynamic convolution, explicit visual center

中图分类号: