计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 114-119.doi: 10.3969/j.issn.1006-2475.2025.06.018

• 信息系统 • 上一篇    下一篇

面向智能电网的LDA-IDF进程日志异常检测方法

  

  1. (国家电网江苏南京供电公司,江苏 南京 210000)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介: 作者简介:刘少君(1980—),男,江苏南京人,高级工程师,硕士,研究方向:电力信息化,E-mail: liusj1980@163.com; 沙倚天(1985—),女,江苏南京人,高级工程师,研究方向:电力信息通信,网络安全,E-mail: ouousha@qq.com; 金倩倩(1986—),女,浙江温州人,高级工程师,研究方向:网络安全,E-mail: sphyjqq@163.com; 陈鹏(1995—),男,江苏泰州人,工程师,研究方向:电力信息通信,E-mail: 982391887@qq.com; 吴越(1995—),男,江苏沭阳人,工程师,研究方向:电力数据挖掘,异常检测,网络安全,E-mail: moonwu95@163.com。
  • 基金资助:
    基金项目:国网江苏省电力有限公司科技项目资助(J2023110)

LDA-IDF Process Log Anomaly Detection Method for Smart Grids

  1. (State Grid Nanjing Power Supply Company,  Nanjing 210000, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:随着智能电网系统规模的扩大,系统中的进程日志数据呈指数级增长,传统的日志异常检测方法难以应对如此庞大且复杂的数据规模。为了及时发现智能电网系统中的异常进程,保障系统安全稳定运行,本文提出一种基于LDA-IDF的进程日志异常检测方法LogLDAIDF。该方法首先对进程日志序列进行LDA主题特征提取,然后引入IDF逆词频方法对主题特征进行加权,并选取权重前k的主题特征作为最终的进程日志主题特征,最后结合Bi-LSTM深度学习模型实现针对进程日志的异常检测。在HDFS和OpenStack这2个真实数据集上的实验结果表明,本文方法相比现有方法具有明显优势,F1分数分别达到了0.987和0.969,表明了本文方法在进程日志异常检测中的有效性和实用性。


关键词: 关键词:智能电网, 异常检测, 进程日志, 深度学习, 主题特征异常检测

Abstract: Abstract: With the expansion of smart grid systems, the process log data has grown exponentially, making traditional log anomaly detection methods inadequate for handling such massive and complex data volumes. To promptly detect abnormal processes in smart grid systems and ensure their safe and stable operation, this paper proposes LogLDAIDF, a process log anomaly detection method based on LDA-IDF. The method first extracts LDA topic features from process log sequences, then introduces the IDF (Inverse Document Frequency) method to weight the topic features, and selects the top-k weighted topics as the final process log topic features, finally combining with a Bi-LSTM deep learning model for process log anomaly detection. Experimental results on two real-world datasets, HDFS and OpenStack, demonstrate that our proposed method significantly outperforms existing methods, achieving F1 scores of 0.987 and 0.969, respectively, results show its effectiveness and practicality in process log anomaly detection.

Key words: Key words: smart grid, anomaly detection, process log, deep learning, semantic feature

中图分类号: