计算机与现代化 ›› 2025, Vol. 0 ›› Issue (03): 1-5.doi: 10.3969/j.issn.1006-2475.2025.03.001

• 人工智能 •    下一篇

基于多特征融合的抑郁症识别模型构建



  

  1. (湖南中医药大学信息科学与工程学院,湖南 长沙 410208)
  • 出版日期:2025-03-28 发布日期:2025-03-28
  • 基金资助:
    湖南省学位与研究生教学改革研究项目(2022JGYB142); 湖南省教育厅科学研究项目(23A0312); 湖南中医药大学研究生创新课题项目(2024CX084)

Construction of Depression Recognition Model Based on Multi-Feature Fusion

  1. (School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China)
  • Online:2025-03-28 Published:2025-03-28

摘要: 近年来抑郁症已成为全球心理健康负担的首要问题,为了对其进行识别,提出一种融合BERT、BiLSTM和ConvNeXt的抑郁症识别模型。首先,利用BERT模型生成具有丰富语义的特征向量;其次,使用BiLSTM模型获取文本的上下文信息以及使用ConvNeXt模型获取文本的局部特征;再次,为了缓解特征提取过程中语义信息的丢失,将BiLSTM和ConvNeXt模型学习到的上下文特征和局部特征通过残差连接进行融合;最后,根据融合的特征信息进行抑郁症的识别。实验结果表明,本文所提出的模型相较于其他几种深度学习模型在准确率、召回率和F1值上均有提升,且能有效提取文本中的抑郁特征,提高抑郁症识别的准确率。

关键词: 抑郁症, BERT, BiLSTM, ConvNeXt, 识别

Abstract:  In recent years, depression has become the primary problem of global mental health burden. In order to identify it, this paper proposes a depression recognition model combining BERT, BiLSTM and ConvNeXt. Firstly, the BERT model is used to generate feature vectors with rich semantics. Secondly, the BiLSTM, and ConvNeXt model is used to obtain the context information and the local features of the text, respectively. Thirdly, to alleviate the loss of semantic information in the feature extraction process, the context and local learned by BiLSTM and ConvNeXt models are fused through residual connections. Finally, depression is recognized according to the fused feature information. The experimental results show that the proposed model improves the accuracy, recall and F1 value compared with other deep learning models, which  can effectively extract the depression features of the text and improve the accuracy of depression recognition.

Key words:  , depression; BERT; BiLSTM; ConvNeXt; recognition

中图分类号: