计算机与现代化 ›› 2025, Vol. 0 ›› Issue (02): 100-107.doi: 10.3969/j.issn.1006-2475.2025.02.014

• 图像处理 • 上一篇    下一篇

基于深度学习的视频去雨算法


  

  1. (1.西安欧亚学院信息工程学院,陕西 西安 710000; 2.西安石油大学计算机学院,陕西 西安 710065)
  • 出版日期:2025-02-28 发布日期:2025-02-28
  • 基金资助:
    陕西省自然科学基金基础研究计划项目(2023-JC-YB-601); 西安市科技计划高校院所人才服务企业项目(23GXFW0077); 西安石油大学研究生精品课程建设项目(2023-X-YKC-003); 西安欧亚学院科研基金资助项目(2024XJZK01)

Video Rain Removal Algorithm Based on Deep Learning

  1. (1. School of Information Engineering, Xi’an Eurasia University, Xi’an 710000, China;
    2. School of Computer Science, Xi’an Shiyou University, Xi’an 710065, China)
  • Online:2025-02-28 Published:2025-02-28

摘要: 针对传统视频去雨算法大多只关注去除雨痕,且仅基于合成数据进行训练,忽略了更复杂的退化因素—雨水积累、遮挡和真实数据中的先验知识等问题,本文提出一种结合合成和真实视频的两阶段视频去雨算法。第一阶段算法在提出的去雨模型Initial-DerainNet的指导下执行逆向恢复过程,网络中输入含退化因素的连续雨帧并融合物理先验知识以获得初始估计的无雨帧。第二阶段采用对抗学习来细化结果,即恢复初始估计无雨帧的整体颜色、光照分布等,得到更准确的无雨帧。实验结果表明,本文算法在合成去雨数据集RainSyntheticDataset100上PSNR值达到35.22 dB,SSIM值达到0.9596,优于JORDER、DetailNet、SpacNN、SE、J4Rnet和FastDeRain等基准去雨算法。在真实雨视频测试集上,本文算法在不同大小的雨视频上PNSR值都能达到30 dB以上,其主观视觉效果和数据指标都优于其他去雨算法,能够有效地提升雨天视频质量。

关键词: 视频去雨算法, 物理先验恢复, 生成对抗网络, 退化因素

Abstract: In view of the fact that most traditional video rain removal algorithms only focus on removing rain marks and are trained only on synthetic data, ignoring more complex degradation factors such as rain accumulation, occlusion, and prior knowledge in real data. In this paper, we propose a two-stage video deraining algorithm that combines synthetic and real videos. The first stage algorithm performs a reverse recovery process under the guidance of the proposed rain removal model Initial-DerainNet. Continuous rain frames containing degradation factors are input into the network and physical prior knowledge is integrated to obtain an initial estimated rain-free frame. The second stage uses adversarial learning to refine the results, that is, to restore the overall color, illumination distribution, etc. of the initially estimated rain-free frame to obtain a more accurate rain-free frame. Experimental results show that the PSNR value of this algorithm reaches 35.22 dB and the SSIM value reaches 0.9596 on the synthetic rain removal data set RainSyntheticDataset100, which is better than benchmark rain removal algorithms such as JORDER, DetailNet, SpacNN, SE, J4Rnet and FastDeRain. On the real rain video test set, the algorithm in this paper can achieve PNSR values of more than 30 dB on rain videos of different dimensions, which is better than other rain removal algorithms in terms of subjective visual effect and data metrics, and can effectively improve the quality of rainy day videos.

Key words:  , video deraining algorithm; physics-based restoration; generative adversarial network; degradation factors

中图分类号: