计算机与现代化 ›› 2024, Vol. 0 ›› Issue (12): 10-14.doi: 10.3969/j.issn.1006-2475.2024.12.002

• 人工智能 • 上一篇    下一篇

基于主题与描述信息的实体链接方法








  

  1. (新疆师范大学计算机科学技术学院,新疆 乌鲁木齐 830000)
  • 出版日期:2024-12-31 发布日期:2024-12-31
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2022D01A226); 四川省区域创新合作项目(2023YFQ0066)

Entity Linking Method Based on Topics and Description Information

  1. (School of Computer Science and Technology, Xinjiang Normal University, Urumqi 830000, China)
  • Online:2024-12-31 Published:2024-12-31

摘要: 实体链接被广泛应用于信息挖掘、问答系统等领域,对于构建知识图谱也有着重要意义。针对现在大多数实体链接方法对于候选实体的信息利用不充分,只是在全局模型中隐式地考虑各实体之间关系的问题,提出一种基于主题与描述信息的实体链接方法(TopDEL),通过实体的描述信息来辅助从提及上下文中筛选出对实体影响较大的词语;同时,在局部模型上使用BERTopic主题模型对文档进行主题提取,并利用主题下的词分布表示各个实体之间的关系,从而进行实体链接。在4个公共数据集上的实验结果表明,TopDEL方法有效。

关键词: 实体链接, 描述信息, 主题, BERTopic, 词分布

Abstract:  Entity linking is widely applied in fields such as information mining and question-answering systems,playing a pivotal role in constructing knowledge graphs. However, it is noted that the majority of current entity linking methods inadequately leverage candidate entity information and merely implicitly consider the relationships between entities within the global model. In response, we propose an entity linking approach named TopDEL, which integrates topics and descriptive information. TopDEL leverages descriptive entity information to aid in the selection of words with significant relevance to the entities from their surrounding context. Concurrently, the BERTopic topic model is incorporated into the local model to extract topics from documents. The word distribution under each topic is then utilized to represent the relationships among various entities for entity linking purposes. Experimental results conducted on four publicly available datasets underscore the efficacy of the TopDEL method. 

Key words:  , entity linking; description information; topic; BERTopic; word distribution

中图分类号: