计算机与现代化 ›› 2024, Vol. 0 ›› Issue (10): 87-92.doi: 10.3969/j.issn.1006-2475.2024.10.014

• 图像处理 • 上一篇    下一篇

基于目标识别的视觉SLAM室内定位增强方法


  

  1. (中国电子科技集团公司第十五研究所,北京 100083)
  • 出版日期:2024-10-29 发布日期:2024-10-30

Enhanced Indoor Positioning Method for VSLAM Based on Object Recognition

  1. (China Electronics Technology Group Corporation 15th Research Institute, Beijing 100083, China)
  • Online:2024-10-29 Published:2024-10-30

摘要: 针对室内动态场景中的空间定位精度低、鲁棒性不足等问题,提出一种适用于室内动态场景下的定位增强方法。首先,该方法按照物体的运动属性将室内常见物体进行分类,并使用YOLOv5s神经网络进行目标识别,获取目标检测框的位置以便后续筛选动态特征点;然后,设计一种特征点选取策略,通过边缘检测和深度信息过滤,确定目标检测框中哪些特征点具备动态运动的可能性;最后,提出一种融合时间步长和特征点数量的关键帧选择算法,用于剔除冗余关键帧,减少多帧之间的特征信息重叠。将所提出的定位增强方法移植到ORB-SLAM2中,并基于德国慕尼黑工业大学(TUM)公开的RGB-D数据集进行测试。实验结果表明,本文的定位增强方法相较于ORB-SLAM2的平均定位误差有了明显降低,可以验证本文方法的有效性

关键词: 视觉SLAM, YOLO目标识别, 空间定位, 室内动态场景

Abstract: In response to the low spatial positioning accuracy and insufficient robustness in indoor dynamic scenarios, this paper proposes an enhanced positioning method suitable for indoor dynamic environments. Firstly, common indoor objects are categorized based on their motion properties, and object detection is performed using the YOLOv5s neural network to obtain the positions of the target detection boxes for subsequent dynamic feature point screening. Then, a feature point selection strategy is designed, which uses edge detection and depth information filtering to determine which feature points within the target detection boxes have the potential for dynamic motion. Finally, a keyframe selection algorithm that integrates time step and the number of feature points is proposed to eliminate redundant keyframes and reduce feature information overlap between multiple frames. The proposed positioning enhancement method is transplanted into ORB-SLAM2 and tested based on the publicly available RGB-D dataset from the Technical University of Munich (TUM). The experimental results show that the average positioning error has reduced compared to ORB-SLAM2, validating the effectiveness of the proposed method.

Key words: visual SLAM, YOLO object detection, spatial positioning, indoor dynamic scenarios

中图分类号: