计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 83-88.doi: 10.3969/j.issn.1006-2475.2024.06.014
摘要:
摘要:为解决深度卷积神经网络进行胰腺分割时存在的胰腺形状位置变化大、噪声干扰、部分小目标等问题,提出一种结合可形变收缩残差块(Deformable Shrinkage Residual Block,DSRB)与级联编码模块(Cascading Encoding Module,CEM)的胰腺分割模型DC U-net。该模型利用2个可形变卷积、注意力机制以及残差结构设计了DSRB,通过可形变卷积来解决胰腺形状位置变化大的问题,使用软阈值化来减少噪声干扰;采用CEM来进行特征融合,对编码特征进行复用以降低编解码阶段的特征差异度,加强对小目标特征的学习。在NIH公开数据集上的实验结果表明,本文模型DC U-net的平均Dice相似系数(Dice Similarity Coefficient, DSC)达到87.26%,平均交并比(Intersection Over Union, IOU)达到77.98%,分割精度优于对比模型。
中图分类号: