计算机与现代化 ›› 2024, Vol. 0 ›› Issue (05): 80-84.doi: 10.3969/j.issn.1006-2475.2024.05.014

• 图像处理 • 上一篇    下一篇

基于可见-近红外光谱法无损检测梨总酸含量

  



  1. (江西省科技基础条件平台中心,江西 南昌 330003)
  • 出版日期:2024-05-29 发布日期:2024-06-12
  • 作者简介: 作者简介:罗澍寰(1976—),男,安徽合肥人,助理工程师,本科,研究方向:图像识别,人工智能,网络安全,E-mail: wetrain@qq.com; 孙武(1975—),男,江西南昌人,助理工程师,研究方向:计算机应用,E-mail:13870806660@139.com; 游杰(1978—),男,江西南昌人,工程师,研究方向:高性能计算,人工智能,E-mail: 24175124@qq.com; 王伟(1975—),男,江西九江人,工程师,研究方向:图形处理,E-mail: 87357553@qq.com; 通信作者:胡必伟(1987—),男,江西九江人,工程师,学士,研究方向:信息技术,E-mail: 798104137@qq.com; 姜南(1976—),男,山东聊城人,工程师,研究方向:经济管理。
  • 基金资助:
    江西省重点研发计划一般项目(20192BBEL50037)
      

Non-destructive Detection of Total Acid Content in Pear Based on#br# Visible-near Infrared Spectroscopy



  1. (Jiangxi Science and Technology Infrastructure Center, Nanchang 330003, China)
  • Online:2024-05-29 Published:2024-06-12

摘要: 摘要:梨作为日常生活中人们最喜爱的水果之一,其总酸含量对梨的口感和品质影响很大,因此无损检测梨中总酸含量具有良好的应用前景。本文采集240个赣北成熟梨样本的近红外光谱数据,以随机的180个梨样本作为校正集,60个未知样本作为预测集,以去除首尾处噪声后的400~1800 nm范围的1401个波长点进行研究分析。采用SG平滑法(SG smoothing)以及基线校正法(Baseline offset correction)对原始光谱数据进行预处理,通过偏最小二乘回归(PLSR)数学模型确定SG平滑法对原始光谱的预处理效果最为显著;并利用竞争自适应重加权(CARS)和连续投影算法(SPA)提取了光谱特征波长。同时,结合PLSR与LS-SVM这2种分析方法建立总酸含量的预测模型。其中,CARS+LS-SVM预测模型对梨总酸含量预测效果最佳,R2p值为0.901,RPD值为2.911。研究结果表明,可见-近红外光谱技术作为一种检测梨总酸含量的方法,结合CARS+LS-SVM预测模型具有良好的性能,完全可以有效实现梨总酸含量的定量检测。




关键词: 关键词:无损检测, 可见-近红外光谱, 特征选择, 梨, 总酸

Abstract: Abstract: Pear as one of the most favored fruit, its total acid content would has a great influnce on pear’s taste and quality, so the application of non-destructive assessment of total acid content in pears shows promising prospects. In this study, the near-infrared spectral data of 240 mature pear samples in northern Jiangxi were collected, take 180 random pear samples as the calibration set and 60 unknown samples as the prediction set. The study and analysis were conducted using 1401 wavelength points in the range of 400~1800 nm, after eliminating noise at the beginning and end of the spectrum. Original spectral data were preprocessed by SG smoothing method and baseline offset correction method, through the Partial Least Squares Regression mathematical model to determine the SG smoothing method has the most significant pretreatment of the original spectral; competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) are used to extract spectral characteristic wavelengths, meanwhile, combining Partial Least Squares Regression and Least Square Support Vector Machine analysis methods to establish the prediction model of total acid content, among them, the CARS+LS-SVM prediction model has the best prediction effect on the total acid content of pear, the R2p value was 0.901, the RPD value was 2.911. Research shows that visible near-infrared spectroscopy is a method to detect the total acid content of pear, combined with the CARS+LS-SVM prediction model, the quantitative detection of pear total acid content can be realized.

Key words: Key words: non-destructive examination, visible-near infrared spectroscopy, feature selection, pear, total acid

中图分类号: