计算机与现代化 ›› 2024, Vol. 0 ›› Issue (04): 83-87.doi: 10.3969/j.issn.1006-2475.2024.04.014

• 信息安全 • 上一篇    下一篇

基于AHP-CNN的加密流量分类方法

  



  1. (1.东华理工大学信息工程学院,江西 南昌 330013; 2.江西省网络空间安全智能感知重点实验室,江西 南昌 330013)
  • 出版日期:2024-04-30 发布日期:2024-05-13
  • 作者简介:游嘉靖(1998—),男,河南郑州人,硕士研究生,研究方向:网络安全,E-mail: 354968612@qq.com; 通信作者:何月顺(1971—),男,湖南永州人,教授,博士,研究方向:大数据与智能信息处理,网络空间安全,E-mail: heys@ecut.edu.cn; 何璘琳(1981—),女,江西南昌人,讲师,研究方向:大数据与智能信息处理,网络空间安全,E-mail: lilyhe@ecut.edu.cn; 钟海龙(1997—),男,四川绵阳人,硕士研究生,研究方向:网络安全,E-mail: 1226619354@qq.com。
  • 基金资助:
    江西省重点研发项目(GJJ2200729); 江西省网络空间安全智能感知重点实验室开放基金资助项目(JKLGIP202206)

Encryption Traffic Classification Method Based on AHP-CNN


  1. (1. College of Information Engineering, East China University of Technology, Nanchang 330013, China;
    2. Jiangxi Key Laboratory of Intelligent Perception for Cyberspace Security, Nanchang 330013, China)
  • Online:2024-04-30 Published:2024-05-13

摘要: 摘要:为了解决现有方法在加密流量特征提取方面不够充分的问题,本文提出一种基于自注意力混合池化卷积神经网络(Attention-based Hybrid Pooling Convolutional Neural Network, AHP-CNN)的加密流量分类方法。该方法对卷积神经网络(Convolutional Neural Network, CNN)的池化层进行改进,以并联形式将平均池化层和最大池化层相结合,形成双层同步池化的模式,从而实现对网络加密流量整体特征和局部特征的捕捉。再将自注意力模块嵌入到模型中,增强模型对于加密流量特征依赖关系的提取,从而更加精准地对加密流量进行分类。实验结果表明,本文所提出的网络模型在识别加密流量的准确率方面有着显著提升,并且F1分数达到了0.94以上。本文为网络加密流量分类提供了一种更为有效且精确的方法,有助于提升网络安全领域的研究与应用能力。

关键词: 关键词:深度学习, 加密流量分类, 卷积神经网络, 混合池化, 自注意力机制

Abstract: Abstract: To address the insufficient feature extraction of existing methods for encrypted traffic, this study proposes an encrypted traffic classification method based on an Attention-based Hybrid Pooling Convolutional Neural Network (AHP-CNN). This method improves the pooling layers of Convolutional Neural Networks (CNNs) by combining average pooling and max pooling in a parallel manner, forming a dual-layer synchronized pooling pattern. This enables the capturing of both global and local features of network encrypted traffic. Furthermore, a self-attention module is incorporated into the model to enhance the extraction of dependency relationships among encrypted traffic features, leading to more accurate classification. Experimental results demonstrate a significant improvement in the accuracy of encrypted traffic identification using the proposed model, with an F1 score exceeding 0.94. This research provides a more effective and precise approach for the classification of network encrypted traffic, contributing to advancements in research and applications in the field of network security.

Key words: Key words: deep learning, encrypted traffic classification, convolutional neural network, hybrid pooling, self-attention mechanism

中图分类号: