[1] |
LI X, LI Z J, WANG H Z, et al. Unmanned aerial vehicle for transmission line inspection: status, standardization, and perspectives[J]. Frontiers in Energy Research, 2021,9. DOI:10.3389/fenrg.2021.713634.
|
[2] |
李辉,周航,董燕,等. 面向输电线路的异常目标检测方法[J]. 计算机与现代化, 2020(8):8-13.
|
[3] |
隋宇,宁平凡,牛萍娟,等. 面向架空输电线路的挂载无人机电力巡检技术研究综述[J]. 电网技术, 2021,45(9):3636-3648.
|
[4] |
林旭鸣. 架空输电线路无人机巡检技术研究进展[J]. 电力设备管理, 2021(5):27-28.
|
[5] |
李建峰,段宇涵,王仓继,等. 无人机在输电线路巡检中的应用[J]. 电网与清洁能源, 2017,33(8):62-65.
|
[6] |
章晋,张珍芬,张丽娜. 输变电智能巡检技术应用与展望[J]. 中国设备工程, 2020(20):160-162.
|
[7] |
张峰,郭锐,卢士彬,等. 高压输电线路巡检机器人障碍物识别与定位[J]. 中国电力, 2019,52(4):111-118.
|
[8] |
阮国恒,李文航. 基于视频联动技术的输电线路远程智能巡检方法[J]. 自动化与仪器仪表, 2021(1):77-80.
|
[9] |
李佐胜,姚建刚,杨迎建,等. 绝缘子污秽等级红外热像检测的视角影响分析[J]. 高电压技术, 2008,34(11):2327-2331.
|
[10] |
CERON A, MONDRAGON I F, PRIETO F. Real time transmission tower detection from video based on a feature descriptor[J]. IET Computer Vision, 2016,11(1):33-42.
|
[11] |
姜浩然,金立军,闫书佳. 航拍图像中绝缘子的识别与故障诊断[J]. 机电工程, 2015,32(2):274-278.
|
[12] |
谭磊,王耀南,沈春生. 输电线路除冰机器人障碍视觉检测识别算法[J]. 仪器仪表学报, 2011,32(11):2564-2571.
|
[13] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]// Computer Vision – ECCV 2016. 2016:21-37.
|
[14] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
|
[15] |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
|
[16] |
BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
|
[17] |
黄芹芹,董洁,陈玥,等. 一种改进SSD算法的输电线路目标检测方法[J]. 电工电气, 2021(6):51-55.
|
[18] |
唐翔翔,沈薇,朱明,等. 基于改进YOLOv4的输电线路异物检测算法[J]. 安徽大学学报:自然科学版, 2021,45(5):58-63.
|
[19] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
|
[20] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448.
|
[21] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
|
[22] |
易继禹,陈慈发,龚国强. 基于改进FasterRCNN的输电线路航拍绝缘子检测[J]. 计算机工程, 2021,47(6):292-298.
|
[23] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
|
[24] |
LIU S, QI L, QIN H, et al. Path Aggregation Network for Instance Segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8759-8768.
|
[25] |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// 15th European Conference. 2018:122-138.
|
[26] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU Loss: Faster and better learning for bounding box begression[J]. arXiv preprint arXiv:1911.08287, 2019.
|
[27] |
JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5:v3.0(Versionv3.0)[EB/OL]. [2022-04-17]. https://zenodo.org/record/3983579.
|