[1] 王中杰,谢璐璐. 信息物理融合系统研究综述[J]. 自动化学报, 2011,37(10):1157-1166.
[2] BIEHL M.RESTful API Design[M]. API-University Press, 2016.
[3] HSU H Y, ORSO A. MINTS: A general framework and tool for supporting test-suite minimization[C]// 2009 IEEE the 31st International Conference on Software Engineering. 2009:419-429.
[4] PRADHAN D, WANG S, ALI S, et al. Search-based cost-effective test case selection within a time budget: An empirical study[C]// Proceedings of the Genetic and Evolutionary Computation Conference. 2016:1085-1092.
[5] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitistmultiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
[6] SEGURA S, PAREJO J A, TROYA J, et al. Metamorphic testing of RESTful Web APIs[J]. IEEE Transactions on Software Engineering, 2018,44(11):1083-1099.
[7] ARCURI A.RESTful API automated test case generation with EvoMaster[J]. ACM Transactions on Software Engineering and Methodology (TOSEM), 2019,28(1):1-37.
[8] CHEN T Y, LAU M F. Dividing strategies for the optimization of a testsuite[J]. Information Processing Letters, 1996,60(3):135-141.〖HJ1.7mm〗
[9] GOYAL A, SHYAMASUNDAR R K,SIVAKUMAR G, et al. Empirical analysis of Greedy, GE and GRE Heuristics[C]// 14th Innovations in Software Engineering Conference. 2021:1-11.
[10]JEFFREY D, GUPTA N. Test suite reduction with selective redundancy[C]// The 21st IEEE International Conference on Software Maintenance. 2015:549-558. .
[11]ZHANG M, ALI S, YUE T. Uncertainty-wise test case generation and minimization for cyber-physicalsystems[J]. Journal of Systems and Software, 2019, 153(c):1-21.
[12]ZHANG L M, MARINOV D, ZHANG L, et al. An empirical study of Junit test-suite reduction[C]// 2011 IEEE 22nd International Symposium on Software Reliability Engineering. 2011:170-179.
[13]WONG W E, HORGAN J R, LONDON S, et al. Effect of test set minimization on fault detectioneffectiveness[J]. Software: Practice and Experience, 1998,28(4):347-369.
[14]WANG S, ALI S, GOTLIEB A. Minimizing test suites in software product lines using weight-based genetic algorithms[C]// Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. 2013:1493-1500.
[15]郑金华,邹娟. 多目标进化优化[M]. 北京:科学出版社, 2017.
[16]ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6):712-731.
[17]ZITZLER E. Indicator-based selection in multiobjective search[C]// International Conference on Parallel Problem Solving from Nature. Springer, 2004:832-842.
[18]LIN J G. Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints[J]. IEEE Transactions on Automatic Control, 1976,21(5): 641-650.
[19]SAYYAD A S, AMMARH. Pareto-optimal search-based software engineering: A literature survey[C]// 2013 2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). 2013:21-27.
[20]WANG Y T, ZHAO X M, DING X M. An effective test case prioritization method based on fault severity[C]// 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS). 2015:737-741.
[21]陈静,舒强,谢昊飞. 基于故障定位的测试用例优先排序方法[J]. 计算机科学, 2019,46(8):239-243.
[22]ARCURI A, BRIAND L. A practical guide for using statistical tests to assess randomized algorithms in software engineering[C]// 2011 33rd International Conference on Software Engineering (ICSE). 2011:1-10.
[23]ALI S, ARCAINI P, YUET. Do quality indicators prefer particular multi-objective search algorithms in search-based software engineering[C]// International Symposium on Search Based Software Engineering. Springer, 2020:25-41.
|