[1] ZHAUNIAROVICH Y, KHALIL I, YU T, et al. A survey on malicious domains detection through DNS data analysis[J]. ACM Computing Surveys, 2018,51(4):1-36
[2] KHARRAZ A, ROBERTSON W, BALIAROTTI D, et al. Cutting the gordian knot: A look under the hood of ransomware attacks[C]// Springer International Publishing. 2016:3-24.
[3] PATSAKIS C, CASINO F, KATOS V. Encrypted and covert DNS queries for botnets: Challenges and countermeasures[J]. Computers & Security, 2020,88:101614.
[4] MARK WARD. Cryptolocker Victims to Get Files Back for Free[EB/OL]. (2014-08-06)[2021-12-05]. https://www.bbc.com/news/techn-ology-28661463.
[5] WIKIBOOKS. Conficker[EB/OL]. [2021-12-05]. https://en.wikipedia.org/wiki/Conficker.
[6] BADER J. The DGA of Ramnit[EB/OL]. [2021-12-05]. https://johannesbader.ch/2014/12/the-dga-of-ramnit/.
[7] 沙泓州,刘庆云,柳厅文,等. 恶意网页识别研究综述[J]. 计算机学报, 2016,39(3):529-542.
[8] YADAV S, REDDY A K K, REDDY A L N, et al. Detecting algorithmically generated domain-flux attacks With DNS traffic analysis[J]. IEEE/ACM Transactions on Networking, 2012,20(5):1663-1677.〖HJ1mm〗
[9] 张维维,龚俭,刘茜,等. 基于词素特征的轻量级域名检测算法[J]. 软件学报, 2016,27(9):2348-2364.
[10]王媛媛,吴春江,刘启和,等. 恶意域名检测研究与应用综述[J]. 计算机应用与软件, 2019,36(9):310-316.
[11]YANG L H, ZHAI J T, LIU W W, et al. Detecting word-based algorithmically generated domains using semantic analysis[J]. Symmetry, 2019,11(2):176.
[12]SELVI J, RODRGUEZ R J. SORIA-OLIVAS E. Detection of algorithmically generated malicious domain names using masked N-grams[J]. Expert Systems with Applications, 2019,124:156-163.
[13]TONG V, NGUYEN G. A method for detecting DGA botnet based on semantic and cluster analysis[C]// Proceedings of the 7th Symposium on Information and Communication Technology. 2016:272-277.
[14]WOODBRIDGE J, ANDERSON H S, AHUJA A, et al. Predicting domain generation algorithms with long short-term memory networks[J]. arXiv preprint arXiv:1611.00791, 2016.
[15]QIAO Y C, ZHANG B, ZHANG W Z, et al. DGA domain name classification method based on long short-term memory with attention mechanism[J]. Applied Sciences, 2019,9(20):4205.
[16]YANG L H, LIU G J, WANG J W, et al. Fast3DS: A real-time full-convolutional malicious domain name detection system[J]. Journal of Information Security and Applications, 2021,61:102933.
[17]HIGHNAM K, PUZIO D, LUO S, et al. Real-time detection of dictionary dga network traffic using deep learning[J]. SN Computer Science, 2021,2(2):1-17.
[18]CHEN Y J, PANG B, SHAO G L, et al. DGA-based botnet detection toward imbalanced multiclass learning[J]. Tsinghua Science and Technology, 2021,26(4):387-402.
[19]王志强,李舒豪,池亚平,等. 基于深度学习的恶意DGA域名检测[J]. 计算机工程与设计, 2021,42(3):601-606.
[20]CHEN C Q, PAN L L, XIE X L. DGA domain name detection based on BiGRU-MCNN[C]// Proceedings of the 2019 4th International Conference on Intelligent Information Processing. 2019:315-319.
[21]杜鹏,丁世飞. 基于混合词向量深度学习模型的DGA域名检测方法[J]. 计算机研究与发展, 2020,57(2):433-446.
[22]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[23]JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017:562-570.
[24]HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision. 2016:630-645.
[25]SAXE J, BERLIN K. EXpose: A character-level convolutional neural network with embeddings for detecting malicious URLs, file paths and registry keys[J]. arXiv preprint arXiv:1702.08568, 2017.
|