[1] WANG L, YANG D Q, HAN X, et al. Location privacy preserving task allocation for mobile crowd sensing with differential geo-obfuscation[C]// Proceedings of the 26th International Conference on World Wide Web. 2017:627-636.
[2] TO H, SHAHABI C, XIONG L. Privacy-preserving online task assignment in spatial crowdsourcing with untrusted server[C]// 2018 IEEE 34th International Conference on Data Engineering (ICDE). 2018:833-844.
[3] BENNETT P N, RADLINSKI F, WHITE R W, et al. Inferring and using location metadata to personalize Web search[C]// Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2011:135-144.
[4] PAN J J, LI G L, HU J T. Ridesharing: Simulator, benchmark, and evaluation[J]. Proceedings of the VLDB Endowment, 2019,12(10):1085-1098.
[5] 李晓会,陈潮阳,白雨靓,等. 一种轨迹隐私保护服务推荐模型研究[J]. 小型微型计算机系统, 2021,42(5):990-995.
[6] 李兰,张才宝,奚舒舒,等. 一种身份认证下交换查询的轨迹位置保护算法[J]. 小型微型计算机系统, 2021,42(6):1340-1344.
[7] 陈潇然,唐晓岚,陈文龙,等. 城市车载网络的路边单元部署机制[J]. 小型微型计算机系统, 2021,42(3):601-608.
[8] ZHANG D Q, WANG L, XIONG H Y, et al. 4W1H in mobile crowd sensing[J]. IEEE Communications Magazine, 2014,52(8):42-48.
[9] 王乐业. 群智感知中的地理位置本地化差分隐私机制:现状与机遇[J]. 计算机科学, 2021,48(6):301-305.
[10]WANG J, WANG L, WANG Y, et al. Task allocation in mobile crowd sensing: State-of-the-art and future opportunities[J]. IEEE Internet of Things Journal, 2018,5(5):3747-3757.
[11]顾一鸣,白光伟,沈航,等. 基于预先缓存的连续查询隐私保护机制[J]. 计算机科学, 2019,46(5):122-128.
[12]GRUTESTER M, GRUNWALD D. Anonymous usage of location-based services through spatial and temporal cloaking[C]// Proceedings of the 1st International Conference on Mobile Systems, Applications and Services. 2003:31-42.
[13]DWORK C. Differential privacy: A survey of results[C]// International Conference on Theory and Applications of Models of Computation. 2006:1-19.
[14]NIU B, ZHANG Z Y, LI X Q, et al. Privacy-area aware dummy generation algorithms for location-based services[C]// 2014 IEEE International Conference on Communications (ICC). 2014:957-962.〖HJ1.1mm〗
[15]SUN Y P, ZHANG B F, ZHAO B K, et al. Mix-zones optimal deployment for protecting location privacy in VANET[J]. Peer-to-peer Networking and Applications, 2015,8(6):1108-1121.
[16]ERLINGSSON U, PIHUR V, KOROLOVA A. RAPPOR:Randomized aggregatable privacy-preserving ordinal response[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 2014:1054-1067.
[17]CORMODE G, JHA S, KULKARNI T, et al. Privacy at scale: Local differential privacy in practice[C]// Proceedings of the 2018 International Conference on Management of Data. 2018:1655-1658.
[18]BORDENABE N E, CHATZIKOKOLAKIS K, PALAMIDESSI C. Optimal geo-indistinguishable mechanisms for location privacy[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 2014:251-262.
[19]GU X L, LI M, CAO Y, et al. Supporting both range queries and frequency estimation with local differential privacy[C]// 2019 IEEE Conference on Communications and Network Security (CNS). 2019:124-132.
[20]ANDRES M E, BORDENABE N E, CHATZIKOKOLAKIS K, et al. Geo-indistinguishability: Differential privacy for location-based systems[C]// Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security. 2013:901-914.
[21]WANG N, XIAO X K, YANG Y, et al. Collecting and analyzing multidimensional data with local differential privacy[C]// 2019 IEEE 35th International Conference on Data Engineering (ICDE). 2019:638-649.
[22]HONG D, JUNG W, SHIM K. Collecting geospatial data with local differential privacy for personalized services[C]// 2021 IEEE 37th International Conference on Data Engineering (ICDE). 2021:2237-2242.
[23]TAKAO M, YUSUKE K. Utility-optimized local differential privacy mechanisms for distribution estimation[C]// Proceedings of the 28th USENIX Security Symposium. 2018:1877-1894.
[24]POWELL M. A direct search optimization method that models the objective and constraint functions by linear interpolation[C]// Advances in Optimization and Numerical Analysis. 1994:51-67.
[25]GU X L, LI M, LI X, et al. Providing input-discriminative protection for local differential privacy[C]// 2020 IEEE 36th International Conference on Data Engineering (ICDE). 2020:505-516.
[26]袁健,王迪,高喜龙,等. 基于差分隐私的匿名组LBS轨迹隐私保护模型[J]. 小型微型计算机系统, 2019,40(2):341-347.
[27]白雨靓,李晓会,陈潮阳,等. 面向轨迹数据发布的优化抑制差分隐私保护研究[J]. 小型微型计算机系统, 2021,42(8):1787-1792.
[28]胡德敏,詹涵. 可预测的差分扰动用户轨迹隐私保护方法[J]. 小型微型计算机系统, 2019,40(6):1286-1290.
|