[1] FAN J, HAN F, LIU H. Challenges of big data analysis[J]. National Science Review, 2014,1(2):293-314.
[2] HOTELLING H. Relations between two sets of variates[J]. Breakthroughs in Statistics, 1936,28(3-4):321-377.
[3] WOLD S, SJSTRM M, ERIKSSON L. PLS-regression: A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001,58(2):109-130.
[4] PARKHOMENKO E, TRITCHLER D, BEYENE J: Sparse Canonical correlation analysis with application to genomic data integration[J]. Statistical Applications in Genetics and Molecular Biology, 2009,8(1):1-34.
[5] HARDOON D R, SHAWE-TAYLOR J. Sparse canonical correlation analysis[J]. Machine Learning, 2011,83(3):331-353.
[6] LI Y, ZHU J. L1-Norm Quantile Regression [J]. Journal of Computational and Graphical Statistics, 2008,17(1):163-185.
[7] YUAN M, LIN Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society Statistical Methodology, 2006,68(1):49-67.
[8] MEIER L, SVD G, BUHLMANN P. The group lasso for logistic regression[J]. Journal of the Royal Statistical Society Statistical Methodology, 2008,70(1):53-71.
[9] LIN D, ZHANG J, LI J, et al. Group sparse canonical correlation analysis for genomic data integration[J]. Bmc Bioinformatics, 2013,14(1):1-16.
[10]罗辽复,张利绒,陈颖丽,等. 基因组中基因间的关联[J]. 内蒙古大学学报(自然科学版),2000(1):37-37.
[11]KONG D, FUJIMAKI R, LIU J, et al. Exclusive feature learning on arbitrary structures via 1,2-norm[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014,1: 1655-1663.
[12]TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 1996,58(1):267-288.
[13]XI C, HAN L. An efficient optimization algorithm for structured sparse CCA, with applications to eQTL mapping[J]. Statistics in Biosciences, 2012,4(1):3-26.
[14]DU L, HUANG H, YAN J, et al. Structured sparse canonical correlation analysis for brain imaging genetics: An improved GraphNet method[J]. Bioinformatics, 2016,32(10):1544-1551
[15]NADALIN S, REBI J, JENGI V, et al. Association between PLA2G6 gene polymorphism for calcium-independent phospholipase A2 and nicotine dependence among males with schizophrenia[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2019,148:9-15.
[16]GIBBONS A, UDAWELA M, JEON W, et al. The neurobiology of APOE in schizophrenia and mood disorders[J]. Frontiers in Bioscience, 2011,16(3):962-979.
[17]MICHALCZYK A, PEKA-WYSIECKA J, KUCHARSKA-MAZUR J, et al. Association between DRD2 and ANKK1 polymorphisms with the deficit syndrome in schizophrenia[J]. Annals of General Psychiatry, 2020,19. DOI:10.1186/s12991-020-00289-0.
[18]MAH S, NELSON M R, DELISI L E, et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia[J]. Molecular Psychiatry, 2006,11(5):471-478.
[19]SAETRE P, LUNDMARK P, WANG A,et al. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: A multi-centre case-control study and meta-analysis[J]. Am .J .Med. Genet B Neuropsychiatr Genet, 2010,153B(2):387-396.
[20]KIM B, KIM H, JOO Y H, et al. Sex-different association of DAO with schizophrenia in Koreans[J]. Psychiatry Res., 2010,179(2):121-125.
[21]LAI J H, ZHU Y S, HUO Z H, et al. Association study of polymorphisms in the promoter region of DRD4 with schizophrenia, depression, and heroin addiction[J]. Brain Research, 2010,1359:227-232.
[22]YANG Y, ZHANG L, GUO D,et al. Association of DTNBP1 with schizophrenia: Findings from two independent samples of han Chinese population[J]. Front Psychiatry, 2020. DOI:10.3389/fpsyt.2020.00446.
[23]FACHIM H A, LOUREIRO C M, CORSI-ZUELLI F, et al. GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function[J]. Epigenomics, 2019,11(4):401-410.
[24]YANDAVU, KUMAR P, GUPTA S,et al. Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: An updated meta-analysis[J]. Asian Journal of Psychiatry, 2016,20:41-51.
[25]YOSHIDA M, SHIROIWA K, MOURI K, et al. Haplotypes in the expression quantitative trait locus of interleukin-1β gene are associated with schizophrenia[J]. Schizophrenia Research, 2012,140(1-3):185-191.
[26]SHEFFIELD J M, ROGERS B P, BLACKFORD J U, et al. Insula functional connectivity in schizophrenia[J]. Schizophrenia Research, 2020,220:69-77.
[27]HUANG X, PU W, LI X,et al. Decreased left putamen and thalamus volume correlates with delusions in first-Episode schizophrenia patients[J]. Front Psychiatry, 2017. DOI:10.3389/fpsyt.2017.00245.
[28]CACHIA A, CURY C, BRUNELIN J,et al. Deviations in early hippocampus development contribute to visual hallucinations in schizophrenia[J]. Translational Psychiatry, 2020,10(1):102.
[29]ARNOLD S E. The medial temporal lobe in schizophrenia[J]. J Neuropsychiatry Clin Neurosci, 1997,9(3):460-470.
[30]MOTHERSILL O, KNEE-ZASKA C, DONOHOE G. Emotion and theory of mind in schizophrenia—investigating the role of the cerebellum[J]. The Cerebellum. 2016,15(3):357-368.
[31]DAS T K, KUMAR J, FRANCIS S, et al. Parietal lobe and disorganisation syndrome in schizophrenia and psychotic bipolar disorder: A bimodal connectivity study[J]. Psychiatry Research: Neuroimaging. 2020,303:111139.
[32]MUBARIK A, TOHID H. Frontal lobe alterations in schizophrenia: a review[J]. Trends Psychiatry Psychother, 2016,38(4):198-206.
[33]HO N F, CHONG P L H, LEE D R, et al. The amygdala in schizophrenia and bipolar disorder: A synthesis of structural MRI, diffusion tensor imaging, and resting-state functional connectivity findings[J]. Harvard Review of Psychiatry 2019,27(3):150-164.
[34]RAJARETHINAM R P, Dequardo J R, NALEPA R, et al. Superior temporal gyrus in schizophrenia: A volumetric magnetic resonance imaging study[J]. Schizophrenia Research, 2000,41(2):303-312.
|