[1] Cisco. Encrypted traffic analytics (ETA)[EB/OL]. [2021-03-27]. https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html.
[2] ISRG互联网安全研究小组. Let’s Encrypt统计数据[EB/OL]. [2021-03-27]. https://letsencrypt.org/zh-cn/stats/.
[3] Cisco. Encrypted traffic analytics white paper[EB/OL]. [2018-12-31]. https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf.
[4] 陈良臣,高曙,刘宝旭,等. 网络加密流量识别研究进展及发展趋势[J]. 信息网络安全, 2019,19(3):19-25.
[5] 潘吴斌,程光,郭晓军,等. 网络加密流量识别研究综述及展望[J]. 通信学报, 2016,37(9):154-167.
[6] ANDERSON B, PAUL S, MCGREW D. Deciphering malware’s use of TLS (without decryption)[J]. Journal of Computer Virology and Hacking Techniques, 2018,14(3):195-211.
[7] ZHOU H Y, WANG Y, LEI X C, et al. A method of improved CNN traffic classification[C]// Proceedings of the 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:177-181.
[8] KIM J, KIM J, THU H L T, et al. Long short term memory recurrent neural network classifier for intrusion detection[C]// Proceedings of the 2016 International Conference on Platform Technology and Service (PlatCon). 2016. DOI: 10.1109/PlatCon.2016.7456805.
[9] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357.
[10]BATISTA G E A P A, CARVALHO A C P L F, MONARD M C. Applying one-sided selection to unbalanced datasets[C]// Proceedings of the 2000 Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence. 2000:315-325.
[11]YEN S J, LEE Y S. Cluster-based under-sampling approaches for imbalanced data distributions[J]. Expert Systems with Applications, 2009,36(3):5718-5727.
[12]GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.
[13]李沛洋,李璇,陈俊杰,等. 面向规避僵尸网络流量检测的对抗样本生成[J/OL]. 计算机工程与应用:1-9(2021-01-29)[2021-03-27]. https://kns.cnki.net/kcms/detail/11.2127.TP.20210129.1053.004.html.
[14]谭越,邹福泰. 基于ResNet和BiLSTM的僵尸网络检测方法[J]. 通信技术, 2019,52(12):2975-2981.
[15]林雍博,凌捷. 基于残差网络和GRU的XSS攻击检测方法[J/OL]. 计算机工程与应用:1-8(2021-04-20)[2021-04-28]. https://kns.cnki.net/kcms/detail/11.2127.TP.20210420.1038.030.html.
[16]万子云,陈世伟,秦斌,等. 基于深度学习的MOOC作弊行为检测研究[J]. 信息安全学报, 2021,6(1):32-39.
[17]王晓茹,张珩. 基于注意力机制和图卷积的小样本分类网络[J/OL]. 计算机工程与应用:1-8(2021-06-24)[2021-06-25]. https://kns.cnki.net/kcms/detail/11.2127.tp.20210624.1629.006.html.
[18]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[19]王伟. 基于深度学习的网络流量分类及异常检测方法研究[D]. 合肥:中国科学技术大学, 2018.
[20]蒋彤彤,尹魏昕,蔡冰,等. 基于多头注意力的恶意加密流量识别[J/OL]. 计算机工程:1-14[2021-05-08]. https://doi.org/10.19678/j.issn.1000-3428.0058517.
[21]李道全,王雪,于波,等. 基于一维卷积神经网络的网络流量分类方法[J]. 计算机工程与应用, 2020,56(3):94-99.
[22]University of New Brunswick. Intrusion detection evaluation dataset (CIC-IDS2017)[EB/OL]. [2021-05-08]. https://www.unb.ca/cic/datasets/ids-2017.html.
[23]DUNCAN B. Malware-traffic-analysis[EB/OL]. [2021-05-08]. https://www.malware-traffic-analysis.net.
[24]Stratosphere Lab. Malware capture facility project[EB/OL]. [2021-05-08]. https://www.stratosphereips.org/datasets-malware.
[25]RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[26]WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). 2017:43-48.
|