[1] 阎昊. 基于数据挖掘的返贫预测模型的研究与应用[D]. 西安:陕西师范大学, 2019.
[2] 田昆. 基于Logistic回归分析的返贫预测模型研究[D]. 兰州:西北师范大学, 2018.
[3] 朱容波,张静静,李媛丽,等. 基于优化FOA-BPNN模型的脱贫时间预测[J]. 中南民族大学学报(自然科学版), 2018,37(4):109-114.
[4] 唐小兵,周国华. 基于主成分分析的县域贫困脆弱性评价——基于2016年湖南省贫困县的调研[J]. 中南林业科技大学学报(社会科学版), 2017,11(3):47-52.
[5] 张学敏,史玲燕,薛艳,等. 乡村振兴视阈下返贫预警评价指标体系构建与实证[J]. 统计与决策, 2021,37(13):58-62.
[6] XU X M, NIU D X, FU M, et al. A multi time scale wind power forecasting model of a chaotic echo state network based on a hybrid algorithm of particle swarm optimization and tabu search[J]. Energies, 2015,8(11):12388-12408.
[7] MESINA J, ISANAN J L, MADERAZO C V. Poverty incidence identification of cities and municipalities using convolutional neural network as applied to satellite imagery[J]. IOP Conference Series: Materials Science and Engineering, 2019,482. DOI: 10.1088/1757-899X/482/1/012044.〖HJ0.44mm〗
[8] POKHRIYAL N, JACQUES D C. Combining disparate data sources for improved poverty prediction and mapping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(46). DOI: 10.1073/pnas.1700319114.
[9] SHENG B, CHEN S L, SI H Y, et al. A feature-based deep neural framework for poverty prediction[C]// Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS). 2021:568-573.
[10]CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357.
[11]马灵草,董婷,戴晗青,等. 基于SMOTE算法的声门型喉癌患者术后下呼吸道感染预警模型构建[J]. 护理学杂志, 2021,36(8):1-4.
[12]WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992,5(2):241-259.
[13]张宏鸣,陈丽君,刘雯,等. 基于Stacking集成学习的夏玉米覆盖度估测模型研究[J]. 农业机械学报, 2021,52(7):195-202.
[14]张庆宏. 基于随机森林算法的我国信用债券违约预测评估[D]. 南京:南京大学, 2020.
[15]FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics and Data Analysis, 2002,38(4):367-378.
[16]张野,叶国林,李欣刚. 基于Stacking模型融合的商户赌博监测算法研究[J]. 数字技术与应用, 2020,38(12):95-98.
[17]JIANG Y, TONG G X, YIN H N, et al. A pedestrian detection method based on genetic algorithm for optimize XGBoost training parameters[J]. IEEE Access, 2019,7:118310-118321.
[18]李轩,梅飞,沙浩源,等. 基于多状态数据均衡与XGBoost的特高压换流阀运行状态评估[J/OL]. 高电压技术:1-10(2021-04-20)[2021-04-28]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13336/j.1003-6520.hve.20210073.
[19]刘秀磊,孔凡芃,谌彤童,等. 基于BERT与XGBoost的航天科技开源情报分类[J]. 郑州大学学报(理学版), 2021,53(3):15-22.
[20]VAPNIK V N, KOTZ S. Estimation of Dependences Based on Empirical Data[M]. New York: Springer, 2006.
[21]徐良辰,郭崇慧. 基于集成学习的胃癌生存预测模型研究[J]. 数据分析与知识发现, 2021,5(8):86-99.
[22]HUANG H, XU H H, WANG X H, et al. Maximum F1-score discriminative training criterion for automatic mispronunciation detection[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015,23(4):787-797.
[23]CHICCO D, JURMAN G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation[J]. BMC Genomics, 2020,21(1). DOI: 10.1186/s12864-019-6413-7.
[24]LAVALLE S M, BRANICKY M S, LINDEMANN S R. On the relationship between classical grid search and probabilistic roadmaps[J]. The International Journal of Robotics Research, 2004,23(7-8):673-692.
[25]BATTEN A J, THORPE J, PIEGARI R I, et al. A resampling based grid search method to improve reliability and robustness of mixture-item response theory models of multimorbid high-risk patients[J]. IEEE Journal of Biomedical and Health Informatics, 2020,24(6):1780-1787.
[26]王彦兵,王聪,赵亚丽,等. 基于ROC曲线的永久散射体识别最佳阈值定量筛选[J]. 遥感学报, 2021,25(10):2083-2094.
[27]王彦光,朱鸿斌,徐维超. ROC曲线及其分析方法综述[J]. 广东工业大学学报, 2021,38(1):46-53.
|