[1] 中华医学会心血管病学分会心力衰竭学组,中国医师协会心力衰竭专业委员会,中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018[J]. 中华心力衰竭和心肌病杂志, 2018,2(4):196-225.
[2] 王逸程,殷珍,张玉平. 慢性心力衰竭治疗进展[J]. 中国保健营养, 2020,30(12):384-385.
[3] 孔洪. 老年心力衰竭的诊治进展[J]. 中华老年心脑血管病杂志, 2019,21(8):785-788.
[4] WATSON A J, O’ROURKE J, JETHWANI K, et al. Linking electronic health record-extracted psychosocial data in real-time to risk of readmission for heart failure[J]. Psychosomatics, 2011,52(4):319-327.
[5] AU A G, MCALISTER F A, BAKAL J A, et al. Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization[J]. American Heart Journal, 2012,164(3):365-372.
[6] MADDOX J K E, JHA A K. A path forward on medicare readmissions[J]. New England Journal of Medicine, 2013,368(13):1175-1177.
[7] 柳晓,陆萍静,郭立华,等. 心力衰竭患者再入院影响因素及干预措施的研究现状[J]. 中国护理管理, 2017,17(6):859-863.
[8] 孙仁华. 心力衰竭再入院现状和展望[J]. 医学综述, 2014,20(15):2757-2760.
[9] ZHOU H Q, DELLA P R, ROBERTS P, et al. Utility of models to predict 28-day or 30-day unplanned hospital readmissions: An updated systematic review[J]. BMJ Open, 2016,6(6):DOI:10.1136/bmjopen-2016-011060.
[10]NAYLOR M D, BROOTEN D, CAMPBELL R, et al. Comprehensive discharge planning and home follow-up of hospitalized elders: A randomized clinical trial[J]. JAMA, 1999,281(7):613-620.
[11]KOEHLER B E, RICHTER K M, YOUNGBLOOD L, et al. Reduction of 30-day postdischarge hospital readmission or emergency department (ED) visit rates in high-risk elderly medical patients through delivery of a targeted care bundle[J]. Journal of Hospital Medicine, 2009,4(4):211-218.
[12]EVANS R L, HENDRICKS R D. Evaluating hospital discharge planning: A randomized clinical trial[J]. Medical Care, 1993,31(4):358-370.
[13]DONZ J, AUJESKY D, WILLIAMS D, et al. Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model[J]. JAMA Internal Medicine, 2013,173(8):632-638.
[14]VAN WALRAVEN C, DHALLA I A, BELL C, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community[J]. Canadian Medical Association Journal, 2010,182(6):551-557.
[15]朱晓娟. 基于机器学习的健康风险评估与预测[D]. 成都:电子科技大学, 2020.
[16]汤培楷. 基于机器学习的再入院预测[J]. 中国数字医学, 2016,11(7):50-52.
[17]杜国栋. 基于梯度提升决策树的患者30天再入院预测模型研究[D]. 昆明:昆明理工大学, 2018.
[18]李金林,赵秀林,张素威,等. 非计划再入院风险预测研究[J]. 北京理工大学学报, 2020,40(2):198-205.
[19]张传备,李方,翟春晓,等. 高斯过程模型对慢性心衰患者1年内再入院的风险评估[J]. 山东大学学报(医学版), 2020,58(6):28-33.
[20]徐继伟,杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018,40(6):1082-1092.
[21]WANG Y Y, WANG D J, GENG N, et al. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection[J]. Applied Soft Computing, 2019,77:188-204.
[22]代瑞瑞. 差分进化算法改进研究[D]. 兰州:西北师范大学, 2016.
[23]颜学峰,余娟,钱锋,等. 基于改进差分进化算法的超临界水氧化动力学参数估计[J]. 华东理工大学学报(自然科学版), 2006,32(1):94-97.
|