[1] BEN SCHAFER J, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M]// The Adaptive Web: Methods and Strategies of Web Personalization. Springer, 2007:291-324.
[2] PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]// The Adaptive Web: Methods and Strategies of Web Personalization. Springer, 2007:325-341.
[3] LIU Q, WU S, WANG D Y, et al. Context-aware sequential recommendation[C]// 2016 IEEE 16th International Conference on Data Mining (ICDM). 2016:1053-1058.
[4] ZHANG S, TAY Y, YAO L N, et al. Next item recommendation with self-attentive metric learning[C]// The 33rd AAAI Conference on Artificial Intelligence. 2019:11-20.
[5] HE R N, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]// 2016 IEEE 16th International Conference on Data Mining (ICDM). 2016:191-200.
[6] CHEN X, XU H T, ZHANG Y F, et al. Sequential recommendation with user memory networks[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:108-116.
[7] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000,12(10):2451-2471.
[8] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]// 2018 IEEE International Conference on Data Mining (ICDM). 2018:197-206.
[9] SOH H, SANNER S, WHITE M, et al. Deep sequential recommendation for personalized adaptive user interfaces[C]// Proceedings of the 22nd International Conference on Intelligent User Interfaces. 2017:589-593.
[10]PASRICHA R, MCAULEY J. Translation-based factorization machines for sequential recommendation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. 2018:63-71.
[11]WU C Y, AHMED A, BEUTEL A, et al. Recurrent recommender networks[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 2017:495-503.
[12]MILLER A, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016:1400-1409.
[13]HUANG J, ZHAO W X, DOU H, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]// The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018:505-514.
[14]YAN A, CHENG S, KANG W C, et al. CosRec: 2D convolutional neural networks for sequential recommendation[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:2173-2176.
[15]TANG J X, WANG K. Personalized Top-N sequential recommendation via convolutional sequence embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:565-573.
[16]徐春晖,徐向东. 前馈型神经网络新学习算法的研究[J]. 清华大学学报(自然科学版), 1999,39(3):1-3.
[17]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[18]WANG S J, CAO L B, WANG Y. A survey on session-based recommender systems[J]. arXiv preprint arXiv:1902.04864, 2019.
[19]FANG H, GUO G B, ZHANG D N, et al. Deep learning-based sequential recommender systems: Concepts, algorithms, and evaluations[C]// International Conference on Web Engineering. 2019:574-577.
[20]WU Y, DUBOIS C, ZHENG A X, et al. Collaborative denoising auto-encoders for Top-N recommender systems[C]// Proceedings of the 9th ACM International Conference on Web Search and Data Mining. 2016:153-162.
[21]KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[22]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
[23]CHO E, MYERS S A, LESKOVEC J. Friendship and mobility: User movement in location-based social networks[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2011:1082-1090.
[24]RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Coference on Uncertainty in Artificial Intelligence. 2009:452-461.
[25]RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th` International Conference on World Wide Web. 2010:811-820.
[26]HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint arXiv:1511.06939, 2015.
|