[1] 程雷. 基于主题模型的微博推荐方法研究[D]. 合肥:安徽大学, 2018.
[2] 王雅静,郭强,邓春燕,等. 基于LDA主题模型的用户特征预测研究[J]. 复杂系统与复杂性科学, 2020,17(4):9-15.
[3] 严长春,生佳根,於跃成,等. 基于主题模型包含突发因素的推荐算法研究[J]. 计算机与数字工程, 2020,48(6):1304-1308.
[4] 高永兵,许庆瑞. 基于改进LDA模型的微博用户兴趣挖掘研究[J]. 内蒙古科技大学学报, 2019,38(3):272-276.
[5] 冯勇,屈渤浩,徐红艳,等. 采用可变时间窗口的TIF-LDA微博主题模型[J]. 小型微型计算机系统, 2018,39(9):2067-2071.
[6] NEGARA E S, TRIADI D, ANDRYANI R. Topic modelling Twitter data with latent Dirichlet allocation method[C]// 2019 International Conference on Electrical Engineering and Computer Science (ICECOS). 2019:386-390.
[7] 邢千里,刘列,刘奕群,等. 微博中用户标签的研究[J]. 软件学报, 2015,26(7):1626-1637.
[8] 牛萍,黄德根. TF-IDF与规则相结合的中文关键词自动抽取研究[J]. 小型微型计算机系统, 2016,37(4):711-715.
[9] WANG S W, LO D, VASILESCU B, et al. EnTagRec+〖KG-1mm〗+: An enhanced tag recommendation system for software information sites[J]. Empirical Software Engineering, 2018,23(2):800-832.
[10]陈文伟. 基于局部标签传播和共现的微博标签推荐[D]. 武汉:华中科技大学, 2019.
[11]YUAN Z M, HUANG C, SUN X Y, et al. A microblog recommendation algorithm based on social tagging and a temporal interest evolution model[J]. Frontiers of Information Technology & Electronic Engineering, 2015,16(7):532-540.
[12]严宇宇,陶煜波,林海. 基于层次狄利克雷过程的交互式主题建模[J]. 软件学报, 2016,27(5):1114-1126.
[13]BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. The Journal of Machine Learning Research, 2003,3:1137-1155.
[14]MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[15]唐明,朱磊,邹显春. 基于Word2Vec的一种文档向量表示[J]. 计算机科学, 2016,43(6):214-217.
[16]VAN DYK D A , PARK T. Partially collapsed Gibbs samplers: Theory and methods[J]. Journal of the American Statistical Association, 2008,103(482):790-796.
[17]肖登明. 基于深度学习的中文文本情感分类研究[D]. 武汉:华中科技大学, 2017.
[18]段旭磊,张仰森,孙祎卓. 微博文本的句向量表示及相似度计算方法研究[J]. 计算机工程, 2017,43(5):143-148.
[19]陆艺,曹健. 面向隐式反馈的推荐系统研究现状与趋势[J]. 计算机科学, 2016,43(4):7-15.
[20]QUIJANO-SANCHEZ L, RECIO-GARCIA J A, DIAZAGUDO B, et al. Social factors in group recommender systems[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2013,4(1). DOI: 10.1145/2414425.2414433.
[21]LIU Q, CHEN E H, XIONG H, et al. A cocktail approach for travel package recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,26(2):278-293.
[22]BERKOVSKY S, FREYNE J. Group-based recipe recommendations: Analysis of data aggregation strategies[C]// Proceedings of the 4th ACM Conference on Recommender Systems. 2010:111-118.
[23]熊回香,叶佳鑫. 基于LDA主题模型的微博标签生成研究[J]. 情报科学, 2018,36(10):7-12.
[24]CHE H M, XU L C. Weibo recommendation algorithm based on tag clustering and user preference[C]// 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). 2019:830-834.
|