[1] 彭麟,王卫红. 新冠肺炎(COVID-19)的致死率分析与治疗对策[J]. 基因组学与应用生物学, 2020,39(9):4405-4408.
[2] 徐丹. 新冠肺炎疫情对经济社会发展可能产生影响的预判[J]. 今日科苑, 2020(2):4-6.
[3] 张吉明. 我国抗击新冠疫情彰显出的优势[J]. 中华魂, 2020(6):13-19.
[4] 谢晶仁. 国外传染病疫情防控对中国应对突发疫情的启示[J]. 中国公共安全(学术版), 2020(1):1-4.
[5] 多米尼克·吉尔伯特. 新冠病毒传染性有多强[J]. 养猪, 2020(2):7.
[6] 致真. 飞沫传播与口罩[J]. 家教世界, 2020(10):44-45.
[7] 仁民. 科学戴口罩让疫情防控更精准[N]. 四平日报, 2020-03-20(006).
[8] 牛作东,覃涛,李捍东等. 改进RetinaFace的自然场景口罩佩戴检测算法[J]. 计算机工程与应用, 2020,56(12):1-7.
[9] 邓黄潇. 基于迁移学习与RetinaNet的口罩佩戴检测的方法[J]. 电子技术与软件工程, 2020(5):209-211.
[10]曹城硕,袁杰. 基于YOLO-Mask算法的口罩佩戴检测方法[J/OL]. 激光与光电子学进展:1-13(2020-12-04)[2020-12-10]. http://kns.cnki.net/kcms/detail/31.1690.TN.20201009.1330.006.html.
[11]王艺皓,丁洪伟,李波等. 复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J]. 计算机工程, 2020,46(11):12-22.
[12]管军霖,智鑫. 基于YOLOv4卷积神经网络的口罩佩戴检测方法[J]. 现代信息科技, 2020,4(11):9-12.
[13]王沣. 改进YOLOv5的口罩和安全帽佩戴人工智能检测识别算法[J]. 建筑与预算, 2020(11):67-69.
[14]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[15]GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448.
[16]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[17]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multi-box detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
[18]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[19]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6517-6525.
[20]REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]// 2018 IEEE Conference on Computer Vision and Pattern Recogniton (CVPR). 2018:1-6.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[22]DAI J F, QI H Z, XIONG Y W. Deformable convolutional networks[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:764-773.
[23]HU J, LI S, SUN G. Squeeze and excitation networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
|