[1] |
BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013,46:109-132.
|
[2] |
WANG C D, DENG Z H, LAI J H, et al. Serendipitous recommendation in E-commerce using innovator-based collaborative filtering[J]. IEEE Transactions on Cybernetics, 2019,49(7):2678-2692.
|
[3] |
BALUJA S, SETH R, SIVAKUMAR D, et al. Video suggestion and discovery for Youtube: Taking random walks through the view graph[C]// Proceedings of the 17th International Conference on World Wide Web. 2008:895-904.
|
[4] |
HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[J]. ACM SIGIR Forum, 2017,51(2):227-234.
|
[5] |
SOBECKI J, BABIAK E, SLANINA M. Application of hybrid recommendation in web-based cooking assistant[C]// Proceedings of the 10th International Conference on Knowledge-based Intelligent Information and Engineering Systems. 2006,3:797-804.
|
[6] |
FREYNE J, BERKOVSKY S. Intelligent food planning: Personalized recipe recommendation[C]// Proceedings of the 15th International Conference on Intelligent User Interfaces. 2010:321-324.
|
[7] |
SCHAFER H, GROH G, SCHLICHTER J H, et al. Personalized food recommendation[C]// International Workshop on Decision Making and Recommender Systems 2015.
|
[8] |
LIN C J, KUO T T, LIN S D. A content-based matrix factorization model for recipe recommendation[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2014:560-571.
|
[9] |
UEDA M, ASANUMA S, MIYAWAKI Y, et al. Recipe recommendation method by considering the user’s preference and ingredient quantity of target recipe[J]. Lecture Notes in Engineering and Computer Science, 2014,2209(1):519-523.
|
[10] |
HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:1531-1540.
|
[11] |
WANG H W, ZHANG F Z, HOU M, et al. SHINE: Signed heterogeneous information network embedding for sentiment link prediction[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:592-600.
|
[12] |
BORDES A, WESTON J, COLLOBERT R, et al. Learning structured embeddings of knowledge bases[C]// Proceedings of the 25th AAAI Conference on Artificial Intelligence. 2011:301-306.
|
[13] |
SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. 2018:297-305.
|
[14] |
WANG H W, ZHANG F Z, XIE X, et al. DKN: Deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference. 2018:1835-1844.
|
[15] |
ZHANG F Z, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:353-362.
|
[16] |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015:2181-2187.
|
[17] |
HAUSSMANN S, SENEVIRATNE O, CHEN Y, et al. FoodKG: A semantics-driven knowledge graph for food recommendation[C]// The 18th International Semantic Web Conference. 2019:146-162.
|
[18] |
CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. 2016:7-10.
|
[19] |
GUO H F, TANG R M, YE Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligenc. 2017:1725-1731.
|
[20] |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. 2017:173-182.
|
[21] |
WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE Transactions on Knowledge & Data Engineering, 2017,29(12):2724-2743.
|
[22] |
SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. 2001:285-295.
|
[23] |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013:2787-2795.
|
[24] |
ZHANG C H, ZHOU M, HAN X, et al. Knowledge graph embedding for hyper-relational data[J]. Tsinghua Science & Technology, 2017,22(2):185-197.
|
[25] |
刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016,53(2):247-261.
|
[26] |
CHEN R C, TING Y H, CHEN J K, et al. The nutrients of chronic diet recommended based on domain ontology and decision tree[C]// 2015 Conference on Technologies and Applications of Artificial Intelligence. 2015:289-295.
|
[27] |
HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 1999:230-237.
|
[28] |
吴玺煜,陈启买,刘海,等. 基于知识图谱表示学习的协同过滤推荐算法[J]. 计算机工程, 2018,44(2):226-232.
|
[29] |
WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018:417-426.
|