计算机与现代化 ›› 2021, Vol. 0 ›› Issue (08): 24-29.

• 算法设计与分析 • 上一篇    下一篇

基于知识图谱与协同过滤的饮食推荐算法

  

  1. (青岛科技大学信息科学技术学院,山东青岛266061)
  • 出版日期:2021-08-19 发布日期:2021-08-19
  • 作者简介:耿化聪(1995—),男,山东菏泽人,硕士研究生,研究方向:推荐系统,知识图谱,E-mail: 569730994@qq.com; 梁宏涛(1979—),男,副教授,博士,研究方向:认知计算,数据挖掘,E-mail: lht@qust.edu.cn; 刘国柱(1965—),男,教授,硕士,研究方向:工业大数据,信息安全,E-mail: lgz_0228@163.com。

Recipe Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

  1. (College of Information Science and Technology, Qingdao University of Science & Technology, Qingdao 266061, China)
  • Online:2021-08-19 Published:2021-08-19

摘要: 针对传统的基于协同过滤的饮食推荐算法只利用用户-物品评分矩阵,没有考虑物品本身的语义信息而导致推荐精度不高的问题,本文通过构建知识图谱引入菜品间的语义信息作为重要推荐依据,提出一种基于知识图谱嵌入和协同过滤的个性化饮食推荐算法。通过在2个不同的低维连续的向量空间里表示出菜品实体及其关系,计算菜品间的语义相似度,将语义相似度纳入到协同过滤推荐中进行推荐。本文算法加强了对菜品间内部隐性信息的利用,缓解了数据稀疏性和冷启动问题,使得推荐结果更加合理。在饮食数据集上的实验结果表明,本文算法在饮食推荐上效果显著,在召回率、AUC值2项指标方面都有着明显提升。

关键词: 饮食推荐, 协同过滤, 知识图谱, 表示学习, 语义相似度

Abstract: In view of the traditional collaborative filtering-based recipe recommendation algorithm that only uses the user-item score matrix and does not consider the semantic information of the item itself resulting in low recommendation accuracy, this paper introduces the semantic information between recipes as an important recommendation basis by constructing a knowledge graph, and proposes a personalized diet recommendation algorithm based on knowledge graph embedding and collaborative filtering. By representing the recipe entity and relationship in two different low-dimensional continuous vector spaces, the semantic similarity between the dishes is calculated, and the semantic similarity is incorporated into the collaborative filtering recommendation for recommendation. The method in this paper alleviates the problems of data sparsity and cold start by strengthening the use of hidden information between dishes, and makes the recommendation result more reasonable. Experiments on the dataset show that the method has a significant effect on recipe recommendation, and it has a significant improvement in recall and AUC.

Key words: recipe recommendation, collaborative filtering, knowledge graph, representation learning, semantic similarity