[1] 刘树艺,李静,胡春,等. 基于卷积神经网络与集成学习的交通标志识别[J]. 计算机与现代化, 2019(12):67-71.
[2] 赵静,王弦,王奔,等. 基于神经网络的多类别目标识别[J]. 控制与决策, 2020,35(8):2037-2041.
[3] 曹燕,李欢,王天宝. 基于深度学习的目标检测算法研究综述[J]. 计算机与现代化, 2020(5):63-69.
[4] 张轶岳. 基于深度学习和域自适应的图像语义分割[D]. 成都:电子科技大学, 2020.
[5] 姜世浩,齐苏敏,王来花,等. 基于Mask R-CNN和多特征融合的实力分割[J]. 计算机技术与发展, 2020(9):65-70.
[6] 蒋纪威,何明祥,孙凯. 基于改进YOLOv3的人脸实时检测方法[J]. 计算机应用与软件, 2020,37(5):200-204.
[7] 冯媛,李敬兆. 改进的卷积神经网络行人检测方法[J]. 计算机工程与设计, 2020,41(5):1452-1457.
[8] 朱信熙,张尤赛. 基于HOG特征的实景交通标志检测[J]. 计算机与数字工程, 2020,48(5):1217-1221.
[9] LIENHART R, KURANOV A, PISAREVSKY V. Empirical analysis of detection cascades of boosted classifiers for rapid object detection[C]// Proceedings of the 25th DAGM Symposium on Pattern Recognition. 2003:297-304.
[10]IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 1991,53(3):231-239.
[11]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classifiation with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[12]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[13]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:1-9.
[14]ZHONG Z L, LI J, LUO Z M, et al. Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(2):847-858.
[15]FANG B, LI Y, ZHAGN H K, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote Sensing, 2019,11(2). DOI: 10.3390/rs11020159.
[16]GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38:142-158.
[17]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[18]UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013,104:154-171.
[19]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unifies, real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[20]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]// Proceedings of the European Conference on Computer Vision. 2016:21-37.
[21]CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:1800-1807.
[22]LIN M, CHEN Q, YAN S C. Network in network[C]// Proceedings of the IEEE International Conference on Learning Representations. 2014.
[23]EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015,111:98-136.
|