[1] SHI T, MA H, CHEN G. Energy-aware container consolidation based on PSO in cloud data centers[C]// 2018 IEEE Congress on Evolutionary Computation. IEEE, 2018:DOI:10.1109/CEC.2018.8477708.
[2] AHAMED F, SHAHRESTANI S A, JAVADI B. Security aware and energy-efficient virtual machine consolidation in cloud computing systems[C]// 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 2016:1516-1523.
[3] MANN Z A. Resource optimization across the cloud stack[J]. IEEE Transactions on Parallel and Distributed Systems, 2018,29(1):169-182.
[4] CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software:Practice & Experience, 2011,41(1):23-50.
[5] BELOGLAZOV A, BUYYA R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J]. Concurrency and Computation:Practice and Experience, 2012,24(13):1397-1420.
[6] GitHub. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services[EB/OL]. [2020-06-22]. http://github.〖KG-*3〗com/Cloudslab/cloudsim/.〖HJ1.16mm〗
[7] BELOGLAZOV A, ABAWAJY J, BUYYA R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012,28(5):755-768.
[8]〖KG-*4〗 FARAHNAKIAN F, LILJEBERG P, PLOSILA J. LiRCUP: Linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers[C]// Proceedings of the 2013 39th Euromicro Conference on Software Engineering and Advanced Applications. IEEE, 2013:357-364.
[9] MAURYA K, SINHA R. Energy conscious dynamic provisioning of virtual machines using adaptive migration thresholds in cloud data center[J]. International Journal of Computer Science and Mobile Computing, 2013,2(3):74-82.
[10]ZHOU Z, HU Z G, LI K Q. Virtual machine placement algorithm for both energy-awareness and SLA violation reduction in cloud data centers[J]. Scientific Programming, 2016:DOI:10.1155/2016/5612039.
[11]KIM G, LEE W. Stable matching with ties for cloud-assisted smart TV services[C]// 2014 IEEE International Conference on Consumer Electronics (ICCE). 2014:558-559.
[12]XIONG A P, XU C X. Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center[J]. Mathematical Problems in Engineering, 2014(6):1-8.
[13]ALBOANEEN D A, TIANFIELD H, ZHANG Y. Glowworm swarm optimisation algorithm for virtual machine placement in cloud computing[C]// 2016 IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress. IEEE, 2016.
[14]BEIK R. Green cloud computing: Greedy algorithms for virtual machines migration and consolidation to optimize energy consumption in a data center[J]. International Journal of Digital Application & Contemporary Research, 2014,9(2):1-9.
[15]WANG J V, FOK K Y, CHENG C T, et al. A stable matching-based virtual machine allocation mechanism for cloud data centers[C]// 2016 IEEE World Congress on Services (SERVICES). 2016:103-106.
[16]LUO J P, LI X, CHEN M R. Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers[J]. Expert Systems with Applications, 2014,41(13):5804-5816.
[17]VASUDEVAN M, TIAN Y C, TANG M L, et al. Energy-efficient application assignment in profile-based data center management through a repairing genetic algorithm[J]. Applied Soft Computing, 2018,67:399-408.
[18]FARAHNAKIAN F, ASHRAF A, PAHIKKALA T, et al. Using ant colony system to consolidate VMs for green cloud computing[J]. IEEE Transactions on Services Computing, 2015,8(2):187-198.
[19]JOSEPH C T, CHANDRASEKARAN K, CYRIAC R. A novel family genetic approach for virtual machine allocation[J]. Procedia Computer Science, 2015,46:558-565.
[20]DUGGAN M, FLESK K, DUGGAN J, et al. A reinforcement learning approach for dynamic selection of virtual machines in cloud data centres[C]// The 6th International Conference on Innovative Computing Technology (INTECH). IEEE, 2016:92-97.
[21]USMAN M J, ISMAIL A S, CHIZARI H, et al. Energy-efficient virtual machine allocation technique using flower pollination algorithm in cloud datacenter: A panacea to green computing[J]. Journal of Bionic Engineering, 2019,16(2):354-366.
[22]LIU X F, ZHAN Z H, DENG J D, et al. An energy efficient ant colony system for virtual machine placement in cloud computing[J]. IEEE Transactions on Evolutionary Computation, 2018,22(1):113-128.
[23]FAN X B, WEBER W D, BARROSO L A. Power provisioning for a warehouse-sized computer[C]// Proceedings of the 34th Annual International Symposium on Computer Architecture. 2007:13-23.
[24]SPEC. Benchmarks, Standard Performance Evaluation Corporation[EB/OL]. [2020-06-22]. https://www.spec.org/.
[25]WANG J V, CHENG C T, TSE C K. Effects of correlation-based VM allocation criteria to cloud data centers[C]// 2016 International Conference on Cyber-enabled Distributed Computing & Knowledge Discovery. IEEE, 2016:398-401.
|