[1] 齐彬,刘方. 人造目标SAR图像实时仿真[J]. 系统仿真学报, 2008,20(1):186-190.
[2] 任苗苗,潘卓,徐向辉,等. 建筑物的高分辨率SAR图像仿真方法[J]. 中国科学院大学学报, 2018,35(6):788-794.
[3] LIU W L, ZHAO Y J, LIU M, et al. Generating simulated SAR images using Generative Adversarial Network[C]// Applications of Digital Image Processing XLI. 2018.
[4] CHA M, MAJUMDAR A, KUNG H T, et al. Improving SAR automatic target recognition using simulated images under deep residual refinements[C]// 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018:2606-2610.
[5] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2672-2680.
[7] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(2):295-307.
[8] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:1646-1654.
[9] TAIGMAN Y, POLYAK A, WOLF L. Unsupervised Cross-Domain Image Generation[DB/OL]. (2016-11-07)[2020-02-17]. https://arxiv.org/abs/1611.02200.
[10]LUC P, COUPRIE C, CHINTALA S, et al. Semantic Segmentation Using Adversarial Networks[DB/OL]. (2016-11-25)[2020-02-17]. https://arxiv.org/abs/1611.08408.
[11]SOULY N, SPAMPINATO C, SHAH M. Semi supervised semantic segmentation using generative adversarial network[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:5688-5696.
[12]YI Z L, ZHANG H, TAN P, et al. Dualgan: Unsupervised dual learning for image-to-image translation[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:2849-2857.
[13]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing & Computer-assisted Intervention. 2015:234-241.
[14]ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:5967-5976.
[15]MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[C]// International Conference on Learning Representations. 2018.
[16]SCAMAN K, VIRMAUX A. Lipschitz regularity of deep neural networks: Analysis and efficient estimation[C]// Proceedings of the 32nd Conference on Neural Information Processing Systems. 2018:3835-3844.
[17]ZHANG L, ZHANG L, MOU X Q, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011,20(8):2378-2386.
[18]WANG Z, LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011,20(5):1185-1198.
[19]XUE W F, ZHANG L, MOU X Q, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014,23(2):684-695.
[20]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[21]SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[DB/OL]. (2014-09-04)[2020-02-17]. https://arxiv.org/abs/1409.1556.
[22]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|