[1] KULKARNI P, MOTZ B, LEWIS T, et al. Inferring loss causes to improve link rate adaptation in wireless networks[C]// Proceedings of IEEE International Conference on Advanced Information Networking and Applications. 2011:659-666.
[2] SUN Y, JI Z, WANG H. TFRC-Satellite: A TFRC variant with a loss differentiation algorithm for satellite networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013,49(2):716-725.
[3] ZHU Y, SUN Y. Packet-level failure classification by characterizing failure patterns in wireless sensor networks[C]// Proceedings of IEEE Global Communications Conference. 2015:1-6.
[4] ANWAR R, NISHAT K, ALI M, et al. Loss differentiation: Moving onto high-speed wireless LANs[C]// Proceedings of IEEE INFOCOM. 2014:2463-2471.
[5] KARMAKAR R, CHATTOPADHYAY S, CHAKRABORTY S. Impact of IEEE 802.11n/ac PHY/MAC high throughput enhancements over transport/ application layer protocols: A survey[J]. IEEE Communications Surveys and Tutorials, arXiv:1702.03257v1, 2017.
[6] KULKARNI P, SOORIYABANDARA M, LI L. Improving TCP performance in wireless networks by classifying causes of packet losses[C]// IEEE Wireless Communications & Networking Conference. 2009.
[7] HUANG K D, DUFFY K R, MALONE D. H-RCA: 802.11 Collision-aware Rate Control[M]. IEEE Press, 2013.
[8] SHEBARO B, MIDI D, BERTINO E. Fine-grained analysis of packet losses in wireless sensor networks[C]// 2014 11th Annual IEEE International Conference on Sensing, Communication, and Networking. 2014:320-328.
[9] 黄庭培,陈海明,张招亮,等. EasiPLED:一种基于监督学习理论的无线传感网络分组丢失和错误原因识别方法[J]. 计算机学报, 2013(3):17-30.
[10]陈剑,李贺武,张晓岩,等. IEEE 802.11n中速率、模式及信道的联合自适应算法[J]. 软件学报, 2015(1):98-108.
[11]LIN T Y, TSAI C Y, WU K R. EARC: Enhanced adaptation of link rate and contention window for IEEE 802.11 multi-rate wireless networks[J]. IEEE Transactions on Communications, 2012,60(9):2623-2634.
[12]杜海鹏,郑庆华,张未展,等. 一种面向4G-LTE网络的丢包区分算法[J]. 计算机研究与发展, 2015,52(12):2684-2694.
[13]PATHAK P H, DUTTA R. A survey of network design problems and joint design approaches in wireless mesh networks[J]. IEEE Communications Surveys and Tutorials, 2011,13(3):396-428.
[14]贾佳. 无线局域网环境信息感知技术的研究[D]. 西安:西安电子科技大学, 2013.
[15]袁东风,吴印桂. 一种无线局域网中基于退避机制的分组调度方法, CN101150469[P].
[16]ZENG Y, PATHAK P H, MOHAPATRA P. Throughput, energy efficiency and interference characterization of 802.11ac[J/OL]. Transactions on Emerging Telecommunications Technologies, 2015,28(2).(2015-03-13)[2019-09-17]. https://doi.org/10.1002/ett.2946.
[17]徐帆,邹玲. WLAN链路质量的评估与分析[J]. 中国新通信, 2013(14):35-37.
[18]KHAN M S, MIDI D, KHAN M I, et al. Fine-grained analysis of packet loss in MANETs[J]. IEEE Access, 2017,5:7798-7807.
[19]ZIOUVA E, ANTONAKOPOULOS T. CSMA/CA performance under high traffic conditions: Throughput and delay analysis[J]. Computer Communications, 2002,25(3):313-321.
[20]ZHAI H Q, KWON Y G, FANG Y G. Performance analysis of IEEE 802.11 MAC protocols in wireless LANs[J]. Wireless Communications & Mobile Computing, 2004,4(8):917-931.
[21]李旭冬,叶茂,李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017,34(10):7-12.
[22]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
[23]CHOI J S, LEE W H, LEE J H, et al. Deep learning based NLOS identification with commodity WLAN devices[J]. IEEE Transactions on Vehicular Technology, 2018,67(4):3295-3303.
[24]ZHANG C, PATRAS P, HADDADI H. Deep learning in mobile and wireless networking: A survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(3):2224-2287.
[25]王俊杰,李达,刘守印.802.11DCF退避算法改进与仿真[J].电子设计工程, 2017,25(10):148-153.
|