[1] KUZMANOVIC A, KNIGHTLY E W. Low-rate TCP-targeted denial of service attacks: The shrew vs. the mice and elephants[C]// Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. 2003:75-86.
[2] KUZMANOVIC A, KNIGHTLY E W. Low-rate TCP-targeted denial of service attacks and counter strategies[J]. IEEE/ACM Transactions on Networking, 2006,14(4):683-696.
[3] 文坤,杨家海,张宾. 低速率拒绝服务攻击研究与进展综述[J]. 软件学报, 2014,25(3):591-605.
[4] 张长旺,殷建平,蔡志平,等. 基于拥塞参与度的分布式低速率DoS攻击检测过滤方法[J]. 计算机工程与科学, 2010,32(7):49-52.
[5] XIANG Y, LI K, ZHOU W L. Low-rate DDoS attacks detection and traceback by using new information metrics[J]. IEEE Transactions on Information Forensics and Security, 2011,6(2):426-437.〖HJ1.25mm〗
[6] JADHAV P N, PATIL B M. Low-rate DDOS attack detection using optimal objective entropy method[J]. International Journal of Computer Applications, 2013,78(3):33-38.
[7] SIMSEK M. A new metric for flow-level filtering of low-rate DDoS attacks[J]. Security and Communication Networks, 2015,8(18):3815-3825.
[8] HOQUE N, BHATTACHARYYA D K, KALITA J K. FFSc: A novel measure for low-rate and high-rate DDoS attack detection using multivariate data analysis[J]. Security and Communication Networks, 2016,9(13):2032-2041.
[9] ZHOU L, LIAO M C, YUAN C, et al. Low-rate DDoS attack detection using expectation of packet size[J]. Security and Communication Networks, 2017, DOI: 10.1155/2017/3691629.
[10]KAUR G, SAXENA V, GUPTA J P. Detection of TCP targeted high bandwidth attacks using self-similarity[J]. Journal of King Saud University: Computer and Information Sciences, 2020,32(1):35-49.
[11]何炎祥,曹强,刘陶,等. 一种基于小波特征提取的低速率DoS检测方法[J]. 软件学报, 2009,20(4):930-941.
[12]FENG Y K, HORI Y, SAKURAI K, et al. A behavior-based detection method for outbreaks of low-rate attacks[C]// Proceedings of the 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet. 2012:267-272.
[13]TANG D, CHEN K, CHEN X S, et al. A new collaborative detection method for LDoS attacks[J]. Journal of Networks, 2014,9(10):2674-2681.
[14]COTAE P, KANG M, VELAZQUEZ A. Spectral analysis of low rate of denial of service attacks detection based on Fisher and Siegel tests[C]// Proceedings of the 2016 IEEE International Conference on Communications. 2016, DOI: 10.1109/ICC.2016.7510884.
[15]WU Z J, ZHANG L Y, YUE M. Low-rate DoS attacks detection based on network multifractal[J]. IEEE Transactions on Dependable and Secure Computing, 2016,13(5):559-567.
[16]SALAMEA C R, D’HARO L F, CORDOBA R. Language recognition using neural phone embeddings and RNNLMs[J]. IEEE Latin America Transactions, 2018,16(7):2033-2039.
[17]KHAN A, SARFARAZ A. RNN-LSTM-GRU based language transformation[J]. Soft Computing, 2019,23(24):13007-13024.
[18]NICHOLAS L, OOI S Y, PANG Y H, et al. Study of long short-term memory in flow-based network intrusion detection system[J]. Journal of Intelligent and Fuzzy Systems, 2018,35(6):5947-5957.
[19]GitHub. CICFlowMeter[EB/OL]. [2019-11-21]. https://github.com/ahlashkari/CICFlowMeter.
[20]魏贞原. 机器学习: Python实践[M]. 北京:电子工业出版社, 2018:71-74.
[21]李洋,董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用, 2018,38(11):3075-3080.
[22]CHEN Y, HWANG K, KWOK Y K. Collaborative defense against periodic shrew DDoS attacks in frequency domain[J]. ACM Transactions on Information and System Security, 2005.
[23]吴志军,岳猛. 基于卡尔曼滤波的LDDoS攻击检测方法[J]. 电子学报, 2008,36(8):1590-1594. |