计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 10-16.doi: 10.3969/j.issn.1006-2475.2025.11.002

• 信息安全 • 上一篇    下一篇

面向生成式人工智能的隐私数据保护方法

  


  1. (广州华商学院人工智能学院,广东 广州 511300) 
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介: 作者简介:通信作者:徐胜超(1980—),男,湖北武汉人,副教授,硕士,研究方向:人工智能大模型,E-mail: isdooropen@126.com; 吕峻闽(1970—),男,山东济南人,教授,博士,研究方向:人工智能大模型,E-mail: lvjunmin_2024@126.com; 蒋大锐(1986—),男,广东湛江人,副教授,博士研究生,研究方向:人工智能大模型,E-mail: jiangdarui_2023@126.com。
  • 基金资助:
     基金项目:广州华商学院校级重点培育科研项目(2024HSZD01)
      

 Generative Artificial Intelligence Oriented Privacy Data Protection Method


  1. (School of Artificial Intelligence, Guangzhou HuaShang College, Guangzhou 511300, China)
  • Online:2025-11-20 Published:2025-11-20

摘要:
摘要:针对生成式人工智能引发的严重隐私泄露风险问题,聚焦生成式人工智能的数据隐私保护,包括生成式人工智能的数据隐私脱敏、生成式人工智能的数据隐私匿名化处理、生成式人工智能的数据隐私增强、生成式人工智能的数据异常行为智能监测与预警。基于生成对抗网络完成数据隐私脱敏,生成器能够生成高度逼真的数据样本,而判别器难以区分真伪,从而提升隐私数据的安全性。基于k-anonymity算法匿名化处理隐私数据敏感信息,进一步提升隐私数据安全性;利用生成式人工智能的差分隐私技术增强数据隐私,达到保护隐私信息的目的;制定隐私数据访问、传输和处理过程中异常行为监测与预警流程,防止隐私数据安全风险事件发生。实验结果显示,设计方法应用后生成数据与原始隐私数据的相似程度最大值达到了98%,隐私数据敏感信息保留度最小值达到了3.21%,隐私数据噪声比例最大值达到了33%,ROC曲线下方面积更大。



关键词: 关键词:隐私数据, 生成式人工智能, 数据脱敏, 大模型, 隐私增强

Abstract: Abstract: Regarding the serious privacy breach risk caused by generative artificial intelligence,we focus on data privacy protection in generative artificial intelligence. This includes four topics: data privacy desensitization in generative AI, data privacy anonymization processing of generative AI, data privacy enhancement of generative AI, and intelligent monitoring and warning of abnormal data behavior using generative AI. Data desensitization is completed based on generative adversarial networks, the generator is capable of generating highly realistic data samples,however, the discriminator is difficult to distinguish authenticity, thereby enhancing the security of private data. Sensitive information of private data is anonymized based on k-anonymity algorithm to further improve the security of private data; the differential privacy technology of generative artificial intelligence model  is utilized to enhance data privacy and achieve the purpose of protecting private information; Formulate monitoring and early warning procedure for abnormal behavior during access, transmission and processing of private data is formulated to prevent the occurrence of security risk events of private data. The experimental results show that the maximum similarity between the generated data and the original privacy data reaches 98%, the minimum retention of sensitive information of privacy data reaches 3.21%, the maximum noise ratio of privacy data reaches 33%, and the area under ROC curve is larger.

Key words: Key words: privacy data, generative artificial intelligence model, data desensitization, big model, privacy enhancement

中图分类号: