计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 24-30.doi: 10.3969/j.issn.1006-2475.2025.08.004

• 人工智能 • 上一篇    下一篇

基于异质信息网络的图书跨域推荐方法

  

  1. (1.南通职业大学电子信息工程学院,江苏 南通 226007; 2.吉隆坡大学信息技术学院,马来西亚 吉隆坡 50250;
    3.南京邮电大学计算机软件工程系,江苏 南京 210023; 4.东南大学机械工程学院,江苏 南京 210096)
  • 出版日期:2025-08-27 发布日期:2025-08-27
  • 作者简介: 作者简介:石丰源(1988—),女,江苏海安人,工程师,吉隆坡大学博士研究生,研究方向:数据挖掘,软件技术,E-mail: sfy@mail.ntvu.edu.cn; 毛毅(1985—),女,陕西蓝田人,讲师,博士,研究方向:机器学习,E-mail: maoyi@njupt.edu.cn; 焦磊(1983—),男,江苏南京人,助理研究员,博士,研究方向:数据分析,数字孪生技术,E-mail: jiaolei@seu.edu.cn。
  • 基金资助:
     基金项目:国家自然科学基金资助项目(62002174); 南通市科技计划项目(JCZ2022083)

Cross-domain Book Recommendation Method Based on Heterogeneous Information Network


  1. (1. School of Electronic Information Engineering, Nantong Vocational University, Nantong 226007, China; 
    2. School of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia; 
    3. Department of Computer Software Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
     4. School of Mechanical Engineering, Southeast University, Nanjing 210096, China)
  • Online:2025-08-27 Published:2025-08-27

摘要:
摘要:针对目前学生书籍推荐模型中学习数据域数据稀疏和冷启动导致推荐算法准确率降低问题,提出一种基于异质信息网络的跨域推荐方法HeterCDR (Heter Cross-Domain Recommendation)。通过引入平移距离模型构造异质信息网络实现源域信息的建模,使用DANN模型实现源域信息向目标域迁移,将异质信息网络和跨域推荐相结合,从而实现目标域推荐准确度的提高。实验数据集采用某高职院校20级和21级学生相关数据。实验结果表明,HeterCDR模型相较于其他推荐模型,命中率平均提升了约3.35%,NDCG指标平均提升了约2.8%,RMSE指标平均下降了约2.65%。




关键词: 关键词:图书推荐, 异质信息网络, 跨域推荐, 网络表示学习, 迁移学习

Abstract:
Abstract: Aiming at the problem that the accuracy of the recommendation algorithm is reduced due to data sparsity and cold start in the learning data domain in the current student book recommendation model, a cross-domain recommendation method HeterCDR (Heter Cross-Domain Recommendation) based on heterogeneous information networks is proposed. The modeling of source domain information is realized by introducing the translation distance model to construct a heterogeneous information network, and the DANN model is used to realize the migration of source domain information to the target domain. The heterogeneous information network and cross-domain recommendation are combined to improve the accuracy of target domain recommendation. The experimental data set uses the relevant data of students from grade 20 to grade 21 of a higher vocational college. The experimental results show that compared with other recommendation models, the hit rate of the HeterCDR model is improved by about 3.35% on average, the NDCG index is improved by about 2.8%, and the RMSE index is reduced by about 2.65%.

Key words: Key words: book recommendation, heterogeneous information network, cross-domain recommendation, the network represents learning, transfer learning

中图分类号: